

© 2014 Анна Малкова.

Все права защищены. Никакая часть этой книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения автора.

ЕГЭ-2015 по математике. Полный курс подготовки.

Анна Малкова

Полный курс подготовки к ЕГЭ-2015 по математике.

Для тех, у кого не получается.

Для тех, кто не понял ключевые моменты и поэтому не может идти дальше.

Для родителей, помогающих детям готовиться к ЕГЭ.

Для учителей и репетиторов.

Содержание вариантов ЕГЭ немного меняется каждый год. Книга построена так, чтобы вы подготовились к ЕГЭ независимо от этих изменений. Вместе с тем, она ориентирована на конкретные задачи ЕГЭ-2015, присутствующие в каждом экзаменационном варианте.

Особое внимание уделяется темам, вызывающим сложности практически у каждого школьника: проценты, текстовые задачи, решение уравнений и систем, геометрия и стереометрия, быстрый счет без калькулятора, а также корни, степени, логарифмы, тригонометрия, функции и производные. Все они являются фундаментом для изучения математики и успешной сдачи ЕГЭ.

Автор книги - Анна Малкова, репетитор-профессионал с опытом работы более 25 лет, ведущая курсов подготовки к $E\Gamma \Im$ на 100 баллов, автор Полного видеокурса для подготовки к $E\Gamma \Im$ по математике, автор книги «Моя профессия – репетитор», руководитель Образовательной компании $E\Gamma \Im$ -Студия.

От редактора

Дорогие друзья!

Эта книга, которая у вас в руках, написана с целью помочь подготовиться к ЕГЭ по математике. В ней все, что казалось вам сложным, рассказано простым и доступным языком.

Здесь даны основы математики. Это не только определения, формулы, факты и соотношения. Конечно, их следует помнить, чтобы легко применять при решении заданий. Но главное – умение логически мыслить, внимание и математическая культура.

В книге показано, как правильно читать текст задачи. Как разложить информацию на составляющие, выделить главное и отбросить то, что не будет использоваться при решении. В результате этого задача становится «прозрачной» и решается устно или путем нескольких простых преобразований.

Вы овладеете искусством упрощать сложное, что не только пригодится вам для успешной сдачи $E\Gamma \Im$, но и откроет для вас математику как стройную, красивую и увлекательную науку. У вас начнет получаться то, что раньше вызывало большие затруднения.

Научившись этому, вы получите подарок на всю жизнь. Вы сможете так же изящно и легко раскладывать жизненные задачи на простые элементы и достигать успеха.

Содержание:

Глава 1.

Прицельная подготовка и минимальный набор задач.

Дроби, проценты, пропорции. Как узнать, что принимается за сто процентов.

Откуда берется непонимание.

Что такое способности к математике и где их взять.

Глава 2.

Чтение графика и тренировка внимания. Что такое абсцисса и ордината.

Не только арифметика. Откуда банк берет деньги.

Что общего у «ботаника» и двоечника.

Считаем без ошибок!

Как делить дробь на дробь.

Каким должен быть правильный ответ на ЕГЭ.

Глава 3.

Текстовая задача – верный балл на ЕГЭ! Единый алгоритм решения.

Задачи на движение. От рассказа - к уравнению. Как выбрать переменные.

Секреты решения уравнений.

Что такое a^2 , a^3 и \sqrt{a} . Из чего можно извлекать корень.

Формулы сокращенного умножения.

Движение по течению и против течения.

Глава 4.

Задачи на работу. Два тракториста, два программиста...

Задачи про бассейн. Правила решения.

Критик, стань помощником! - или как получить от окружающих то, что вам нужно?

Один из секретов успешных людей.

Глава 5.

Задачи на проценты. Полезные формулы.

Сплавы, смеси, растворы. Изюм и виноград.

Задачи на движение по окружности.

Что такое средняя скорость.

Как решать системы уравнений.

Приемы быстрого счета: легко и без калькулятора! Принцип KISS.

Глава 6.

Теория вероятностей на ЕГЭ.

Что такое вероятность и как ее считать.

Независимые события.

Привет от Наполеона.

Глава 7.

Какие бывают числа? Натуральные, целые, рациональные, действительные. . .

Числовые множества.

Числа правят миром - так ли это?

Корни и степени.

Действия со степенями.

Задания ЕГЭ на вычисление и решение уравнений.

Глава 8.

Логарифмы.

Неожиданный выход из тупика.

Определение логарифма.

Для каких чисел существуют логарифмы.

Действия с логарифмами.

Решение задач ЕГЭ.

Глава 9.

Вычисление площадей фигур. Формулы и приемы решения.

Основы тригонометрии. Синус, косинус и тангенс.

Задачи на внешний угол треугольника.

Важные соотношения в прямоугольном треугольнике.

Подобные треугольники.

Зачем нужен греческий алфавит.

Глава 10.

Геометрия в картинках.

Треугольники: основные формулы, факты и соотношения. Высоты, медианы и биссектрисы.

Четырехугольники: основные формулы, факты и соотношения.

Окружность и круг.

О чем царь спрашивал математика.

Глава 11.

Что такое объем и площадь.

Вершины, ребра, грани.

Многогранники: куб, параллелепипед, пирамида, призма.

Тела вращения: цилиндр, конус, шар.

Стереометрия: просто применяем формулы.

Глава 12.

Стереометрия: приемы и секреты.

Разбор самых интересных задач.

Задачи на сообразительность.

Правильный чертеж и пространственное воображение.

Глава 13.

Тригонометрия.

Две системы измерения углов.

Тригонометрический круг.

Формулы тригонометрии.

Формулы приведения.

Глава 14.

Что такое функция.

Исследование графика функции.

Производная функции.

Продолжение подготовки к ЕГЭ: портал www.EGE-Study.ru

Большой репетиторский секрет.

Справочный материал

- 1. Таблица квадратов натуральных чисел от 10 до 30.
- 2. Греческий алфавит.
- 3. Полезные сайты для подготовки к ЕГЭ по математике.

Глава 1.

Прицельная подготовка и минимальный набор задач.

Дроби, проценты, пропорции. Как узнать, что принимается за сто процентов. Откуда берется непонимание.

Что такое способности к математике и где их взять.

Хотите хорошо сдать ЕГЭ? Вам поможет эта книга. По ней вы подготовитесь к экзамену сами, без репетитора. С любого уровня, даже с нуля. Даже если у вас нет «математических способностей».

Я репетитор. Ко мне приходит ученик, путающий умножение с вычитанием, а через пару месяцев его не узнать. Еще через некоторое время он становится вполне приличным абитуриентом. И это не чудеса. Вы тоже так можете, и особых «способностей» для этого вам не понадобится.

Знаете ли вы, что в любом деле есть свои секреты, владея которыми можно легко, быстро и качественно сделать задуманное?

Вот о таких ключевых моментах в подготовке и сдаче ЕГЭ и пойдет речь в книге. Я поделюсь с вами своими многолетними наработками, расскажу, ЧТО делать и в каком порядке. Другими словами, разболтаю все репетиторские секреты, собранные за двадцать лет работы с выпускниками. Этой информации нигде больше нет, потому что здесь собран живой профессиональный опыт.

Вам наверняка когда-то говорили, что надо решать побольше задач. И еще – любить математику, потому что она «ум в порядок приводит».

А если не знаешь, как решать эти самые задачи, и вообще математика дается с трудом? Если невозможно любить предмет, самый скучный во всей школьной программе? Что тогда делать?!

Как вы думаете, откуда берется непонимание? Оказывается, дело не в каких-то сказочных «математических способностях», а в очень простых вещах. И вы наверняка удивитесь, если я скажу по секрету, что о них вам рассказывали еще в младшей школе! Только тогда, видно, вы не всё услышали, поняли, осмыслили, а может быть, и просто пропустили мимо ушей. Вот с этого-то всё непонимание и началось. А сегодня уже пора готовиться к выпускному экзамену!

Мы с вами разберем как раз те разделы, которые вам кажутся самыми сложными. Проценты, текстовые задачи, геометрия и стереометрия – это на самом деле легко. Всё зависит от того, как рассказать, на чем сделать акцент, как обобщить.

Вы научитесь решать задачи без ошибок, считать без калькулятора, а ещё узнаете, как сделать школьную учительницу своим помощником.

Вот первый секрет: сдать ЕГЭ намного проще, чем вы думаете. Главное – правильный подход. Ваша подготовка должна быть прицельной! Мы не будем решать все подряд, а начнем с беспроигрышных задач. Понравится – пойдем дальше. Некоторые задачи в книге разобраны полностью, с другими вы справитесь самостоятельно. Решения и ответы приведены в конце каждой главы. А если какая-либо задача показалась слишком легкой, даже банальной? Прошу вас, не спешите!

Знаете ли вы, что есть только два препятствия в обучении? Вот они: «У меня ничего не получится» и «Ну, я все это знаю».

Любой опытный репетитор вам скажет, что первое из них намного проще преодолеть! Уверенность появляется и растет с количеством решенных задач. А вот второе убеждение мешает и троечникам, и отличникам. Оно ограничивает, не дает расти. Между «Ну, я все знаю» и «Я хорошо сдал $E\Gamma 9!$ » - колоссальная разница!

Убедитесь, что у вас всё получается. Все задачи, предложенные в этой книге, решайте самостоятельно, без калькулятора, и сверяйте с ответом. Дело в том, что именно в простых задачах обычно возникают досадные ошибки. Помните, что в части В не бывает «почти правильного» ответа, а наша с вами цель - получить на ЕГЭ максимально возможный балл.

Загляните в раздел простых текстовых задач. Обычно это самые первые задачи в вариантах ЕГЭ. Вы увидите, что большинство из них - совсем элементарные. «Конечно, я умею их решать», - скажете вы. Я и не сомневаюсь! Только даже среди них есть такие, в которых правильный ответ получают не все.

1. Спидометр автомобиля показывает скорость в милях в час. Какую скорость (в милях в час) показывает спидометр, если автомобиль движется со скоростью 36 км в час? (Считайте, что 1 миля равна 1,6 км.)

Что будем делать? Умножать или делить? Главное – спешить не нужно. Запишем кратко условие задачи:

```
1 \text{ миля} - 1,6 \text{ км} x \text{ миль} - 36 \text{ км} (это расстояние, которое автомобиль проезжает за час).
```

Во сколько раз x миль больше, чем 1 миля? Очевидно, во столько же раз, во сколько 36 км больше, чем 1,6 км. Значит,

$$\frac{x \text{ миль}}{1 \text{ миля}} = \frac{36 \text{ км}}{1,6 \text{ км}}$$
 $x = 36:1,6$
 $x = 22,5.$

2. Павел Иванович купил американский автомобиль, спидометр которого показывает скорость в милях в час. Американская миля равна 1609 м. Какова скорость автомобиля в километрах в час, если спидометр показывает 65 миль в час? Ответ округлите до целого числа.

```
1 миля — 1,609 километров 65 миль (в час) — x километров (в час) 65 = x : 1,609 x = 65 \cdot 1,609 x = 104,585
```

Округлим результат до целого числа. А как? 104 или 105?

Запомним правило: для того чтобы правильно округлить ответ, смотрим на следующую цифру. Если следующая цифра — от 1 до 4, округляем до меньшего числа (ведь до него ближе). Если от 5 до 9 — в сторону большего.

У нас следующая цифра – пятерка. Значит, округляем в сторону большего числа. Ответ: 105.

Ответ на $E\Gamma \Im$ по математике следует записывать в виде целого числа или десятичной дроби. И сейчас мы вспомним, что такое дроби и какие они бывают. Дело в том, что многие учащиеся, привыкнув считать на калькуляторе, к 11 классу напрочь забывают о таких вещах.

Обыкновенная дробь – это выражение вида $\frac{p}{q}$, где p - целое, а q – натуральное. Число p называется числителем, q – знаменателем

Если числитель меньше знаменателя, дробь называется правильной. Другими словами, правильная дробь меньше единицы.

Если числитель больше знаменателя, дробь неправильная. Она больше единицы. Такие дроби еще можно записывать в виде смешанных чисел, например, $2\frac{2}{3}, 9\frac{3}{8}$.

Как перевести смешанное число в неправильную дробь? Например, как записать число $9\frac{3}{8}$ в виде дроби со знаменателем 8?

Это просто. $9\frac{3}{8}$ - это 9 целых и еще $\frac{3}{8}$, то есть $\frac{9}{1}+\frac{3}{8}=9\cdot\frac{8}{8}+\frac{3}{8}=\frac{72}{8}+\frac{3}{8}=\frac{75}{8}$. И наоборот, неправильную дробь всегда можно записать в виде смешанного числа, то

есть выделить целую часть.

Например, $\frac{98}{5} = 98: 5 = \frac{95}{5} + \frac{3}{5} = 19\frac{3}{5}.$ Десятичные дроби – это дроби со знаменателем 10, 100, 1000... Чтобы перевести обыкновенную дробь в десятичную, просто разделите (в столбик) числитель на знаменатель. Например,

$$\frac{2}{5} = 2 : 5 = 0, 4;$$

$$\frac{3}{8} = 3 : 8 = 0, 375;$$

$$\frac{1}{3} = 0, 3333333...;$$

$$\frac{2}{11} = 0, 181818...$$

А десятичные дроби легко перевести в обыкновенные. Иногда их можно сократить:

$$\frac{3}{10} = 0, 3;$$

 $4, 6 = 4\frac{6}{10} = \frac{46}{10} = \frac{23}{5}.$

Задачи на проценты традиционно вызывают сложности у выпускников. Давайте вспомним, что

один процент - это одна сотая часть от чего-либо

$$1\% = \frac{1}{100}$$
, тогда $10\% = \frac{10}{100} = \frac{1}{10} = 0, 1;$ $25\% = \frac{25}{100} = \frac{1}{4};$ $60\% = \frac{60}{100} = \frac{3}{5};$ $5\% = \frac{5}{100} = \frac{1}{20}.$

А что такое дробь (то есть часть) от числа?

Одна четвертая часть от числа x, или $\frac{1}{4}$ от x, означает, что дробь $\frac{1}{4}$ умножается на число (величину) x.

Например, найти 2% от 60 минут - значит, $\frac{2}{100}$ надо умножить на 60.

Чтобы найти дробь от числа, надо дробь умножить на это число.

3. Запишите в виде обыкновенной и в виде десятичной дроби: 50%, 13%, 45%, 250%.

$$50\% = \frac{50}{100} = \frac{1}{2} = 0, 5;$$

$$13\% = \frac{13}{100} = 0, 13;$$

$$45\% = \frac{45}{100} = \frac{9}{20} = 0,45;$$

$$250\% = \frac{250}{100} = \frac{5}{2} = 2, 5.$$

4. Сколько градусов содержит угол, если он составляет 40% от прямого угла? Найдем 40% от 90° .

$$0, 4 \cdot 90 = 36.$$

Ответ: 36°.

5. Чему равны в минутах 25% часа? 150% часа?

25% часа – это четверть часа, то есть 15 минут.

150% часа – это 3/2 часа, то есть полтора часа, или 90 минут.

В задачах, да и в жизни, часто говорится об изменении какой-либо величины на определенный процент. Что это значит? Повышение цены на 10% означает, что к прежней цене x прибавили 0,1x. То есть если первоначальная цена равна x, то новая цена составит x+0,1x=1,1x. Скидка на 25% означает, что прежняя цена уменьшилась на 25%. И если первоначальная цена была x, то новая цена составит x-0,25x=0,75x.

6. Кроссовки стоят 3000 рублей. Сезонная скидка составляет 15 процентов. Сколько вы заплатите за кроссовки с учетом скидки?

$$0,15\cdot 3000=15\cdot 30=450$$
 – это сама скидка.

3000 - 450 = 2550 (рублей) – это новая стоимость кроссовок с учетом скидки.

7. Клиент взял в банке кредит 120000 рублей на год под 16%. Какую сумму он должен выплатить в течение года с учетом процентов?

$$0,16 \cdot 120000 = 19200$$
 – это проценты,

120000 + 19200 = 139200 рублей – выплатит клиент с учетом процентов.

8. Держатели дисконтной карты книжного магазина получают при покупке скидку 5%. Книга стоит х рублей. Сколько рублей заплатит держатель дисконтной карты за эту книгу?

Если стоимость книги принять за 100%, то стоимость ее со скидкой – 95% от x рублей. Значит, с учетом скидки книга будет стоить 0.95x рублей.

9. За год население города увеличилось на 1,3 процента. Во сколько раз выросло население города?

Пусть население города – x жителей. За год оно увеличилось на 1,3% и стало равно

$$x + 0.013x = 1.013x$$
.

Это значит, что население выросло в 1,013 раза.

10. Шариковая ручка стоит 40 рублей. Какое наибольшее число таких ручек можно будет купить на 900 рублей после повышения цены на 10%?

Очевидно, что
$$10\%$$
 от 40 – это $\frac{10}{100} \cdot 40 = 0, 1 \cdot 40 = 4$.

Новая цена ручки составит 44 рубля. На 900 рублей можно купить 20 ручек.

11. Цена на электрический чайник была повышена на 16% и составила 3480 рублей. Сколько рублей стоил чайник до повышения цены? Запомним важное правило:

за 100% принимается та величина, с которой сравниваем

Цена повышена на 16% по сравнению с чем? – с прежней ценой. Значит, прежняя цена – это 100%, новая цена – 116%.

Получаем, что

$$116\%$$
 - 3480 рублей 100% - x рублей

Во сколько раз 3480 рублей больше, чем x рублей? – Во столько же, во сколько раз 116% больше, чем 100%, то есть

$$\frac{3480}{x} = \frac{116}{100}$$

Напомним, что такое равенство двух отношений вида $\frac{a}{b}=\frac{c}{d}$ называется пропорцией. Основное свойство пропорции: **произведение крайних членов равно произведению средних**, то есть $a\cdot d=b\cdot c$.

Если в пропорции есть неизвестная величина, ее можно найти именно по этому правилу.

Например, из пропорции $\frac{a}{x} = \frac{c}{d}$ находим x:

$$a \cdot d = x \cdot c$$
$$x = \frac{a \cdot d}{c}$$

Решаем нашу пропорцию.

$$x \cdot 116 = 3480 \cdot 100$$

Получаем:

$$x = \frac{3480 \cdot 100}{116}$$

Ответ: 3000.

12.Мобильный телефон стоил 3500 рублей. Через некоторое время цену на эту модель снизили до 2800 рублей. На сколько процентов была снижена цена?

Нам нужно узнать, на сколько снизилась цена по сравнению с первоначальной, поэтому первоначальную цену принимаем за 100%. Найдем, какой процент новая цена составляет от первоначальной. Обозначим его за x.

Получаем, что

$$3500$$
 рублей – это 100%

$$2800$$
 рублей – это $x\%$

Составляем пропорцию:

$$\frac{3500}{2800} = \frac{100}{x}$$

и решаем ее:

$$x = \frac{2800 \cdot 100}{3500}$$

x = 80.

Новая цена телефона составляет 80% от первоначальной. Значит, цена была снижена на 20%.

Ответ: 20.

Еще одна задача на проценты. Обратите внимание – она не так проста, как может показаться.

13. Налог на доходы составляет 13% от заработной платы. После удержания налога на доходы Марья Ивановна получила 9570 рублей. Сколько рублей составляет заработная плата Марьи Ивановны?

Итак, Марья Ивановна получила 9570 рублей после удержания налога. Значит, 13% заработной платы у нее вычли, а выдали 87%. Дальше все просто: вам нужно составить пропорцию и решить ее.

$$9570: x = 87\%: 100\%$$
$$x = \frac{9570 \cdot 100}{87}$$

Получаем, что зарплата Марьи Ивановны составляет 11000 рублей.

14. В городе N живет 200000 жителей. Среди них 15% детей и подростков. Среди взрослых 45% не работает (пенсионеры, студенты, домохозяйки и т.п.). Сколько взрослых жителей работает?

В чем сложность задачи и почему ее редко решают правильно? Дело в том, что «15 процентов» или «45 процентов» – понятия относительные. Каждый раз за сто процентов могут приниматься разные величины. Помните правило? В каждом случае за сто процентов принимается то, с чем мы сравниваем.

Найдем сначала, сколько в городе взрослых. По условию, дети и подростки составляют 15% от 200000 жителей. Значит, их число – это 15% от 200000, то есть $\frac{15}{100}$ надо умножить на 200000.

$$\frac{15}{100} \cdot 200000 = 30000$$

Получим, что городе N живет 30000 детей и подростков. Следовательно, взрослых 170000. Среди взрослых 45% не работает. Теперь за 100% мы принимаем число взрослых. Получается, что число работающих взрослых жителей равно 55% от 170000, то есть 93500.

Ответ: 93500.

«У меня нет способностей к математике. Как печально. Наверно, я хуже всех. Никогда мне не получить хорошего образования...» Жалеть себя можно бесконечно.

А может быть, дело совсем не в этом? Не в загадочных «математических способностях», а в простых вещах, которые вам вполне по силам?

Ведь школьная математика на самом деле проста. Для того чтобы получить на ЕГЭ положительную оценку, нужно владеть лишь четырьмя арифметическими действиями – сложением, вычитанием, умножением и делением. И еще, пожалуй, надо знать, что такое x^2 и \sqrt{x} . Всё.

Сложности начинаются, когда вы сами себя запутываете: «убрать x» (куда убратьто?). «Избавиться от корня» (как именно избавиться?) Появляются какие-то магические

действия, смысл которых непонятен. Изучение точной науки превращается в шаманскую пляску с бубном.

Обещаю вам, что в этой книге никаких «шаманских заклинаний» вы не встретите. Всё будет для вас просто и понятно. А вопрос о способностях мы оставим до конца книги, ОК? Освоите геометрию, стереометрию, текстовые задачи – и увидите, как вырастет ваша самооценка.

Давайте сразу договоримся грамотно называть числа. 2,3 – это две целых три десятых, а вовсе не «две третьих». 0,5 – это ноль целых пять десятых, а не «ноль пятых».

А если вам сложно уже сейчас? Если математика вам не дается даже на этом уровне? Тогда начните с повторения курса ГИА. Например, посмотрите наш видеокурс «ГИА-Алгебра» из комплекта СуперГИА.

Обратите внимание на приемы быстрого счета, разобранные в этой книге. И помните, что вам повезло больше, чем многим школьникам в западной Европе. Я наблюдала, как они дважды два считают на калькуляторе и не привыкли по-другому:-)

Мой многолетний опыт показывает: любой выпускник способен сдать ЕГЭ по математике хотя бы на четверку.

Убедитесь сами.

15. Розничная цена учебника 180 рублей, она на 20% выше оптовой цены. Какое наибольшее число таких учебников можно купить по оптовой цене на 11000 рублей?

Оптовая цена – та, по которой магазин получает товар. Розничная – та, по которой товар продают вам, когда вы приходите в магазин. Конечно, розничная цена выше.

Что принимаем за 100% ? Очевидно, то, с чем сравниваем, то есть оптовую цену. Тогда розничная цена равна 120%. Составляем пропорцию и решаем ее. Находим, что оптовая цена учебника равна 150 рублей.

На 11000 рублей можно купить 73 учебника.

16. В школе 800 учеников, из них 30% — ученики начальной школы. Среди учеников средней и старшей школы 20% изучают немецкий язык. Сколько учеников в школе изучают немецкий язык, если в начальной школе немецкий язык не изучается?

 $800 \cdot 0, 7 = 560$ (ученики средней и старшей школы).

 $0, 2 \cdot 560 = 112$ (изучают немецкий язык).

Ответ: 112.

17. При оплате услуг через платежный терминал взимается комиссия 5%. Терминал принимает суммы кратные 10 рублям. Аня хочет положить на счет своего мобильного телефона не меньше 300 рублей. Какую минимальную сумму она должна положить в приемное устройство данного терминала?

Давайте пойдем от результата, который надо получить. Аня хочет, чтобы на счету ее мобильного лежало не меньше 300 рублей. Комиссия платежного терминала 5%, значит, Аня должна скормить терминалу не менее 315 рублей. Терминал принимает купюры кратные 10 рублям, значит, минимальная сумма – 320 рублей.

Глава 2.

Чтение графика и тренировка внимания. Что такое абсцисса и ордината.

Не только арифметика. Откуда банк берет деньги.

Что общего у «ботаника» и двоечника.

Считаем без ошибок!

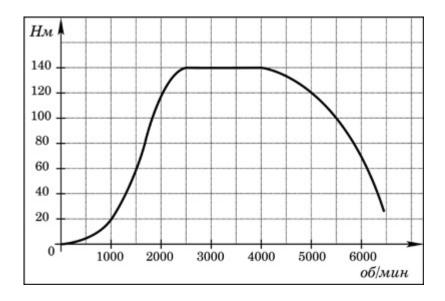
Как делить дробь на дробь.

Каким должен быть правильный ответ на ЕГЭ.

Как вы думаете, можно ли не решить задачу на чтение графика? Казалось бы, что тут особенного? Смотрим на график, отвечаем на вопрос. Тридцать секунд – и готово. Тогда откуда же берутся ошибки?

На самом деле это проверка вашей внимательности. Поэтому я попрошу вас все-таки решить предложенные задачи и сверить с ответами в конце главы.

1. На графике изображена зависимость крутящего момента двигателя от числа оборотов. На оси абсцисс откладывается число оборотов в минуту, на оси ординат – крутящий момент в Нм. Скорость автомобиля (в км/ч) приближенно выражается формулой v=0,036n, где n – число оборотов двигателя в минуту. С какой наименьшей скоростью должен двигаться водитель, чтобы крутящий момент был не меньше 120? Ответ дайте в километрах в час.



Запомним новые термины, встретившиеся в этой задаче.

Абсцисса – это координата точки по горизонтали.

Ордината - координата по вертикали.

Ось абсцисс – горизонтальная ось, чаще всего называемая ось X.

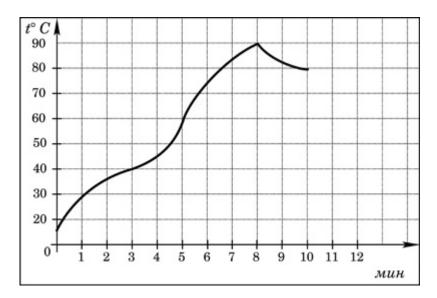
Ось ординат – вертикальная ось, или ось Y.

Если вы не знаете, что такое крутящий момент двигателя – не беда. Чем бы он ни был, его зависимость от числа оборотов в минуту показана на графике. Крутящий момент должен быть не меньше (то есть больше или равен) 120. При этом минимальное число оборотов в минуту равно 2000.

A скорость равна $0,036 \cdot 2000 = 72$ км/ч.

Ответ: 72.

2. На графике показан процесс разогрева двигателя легкового автомобиля при температуре окружающего воздуха 10°. На оси абсцисс откладывается время в минутах, прошедшее от запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Когда температура достигает определенного значения, включается вентилятор, охлаждающий двигатель, и температура начинает понижаться. Определите по графику, сколько минут прошло от момента запуска двигателя до включения вентилятора?

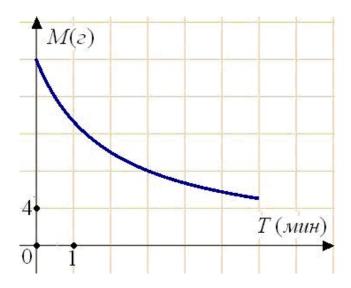


Внимательно читаем условие! Включили вентилятор – и температура двигателя начала понижаться. То есть до этого момента температура росла. Значит, нужна самая высокая точка на графике. Достигается она через 8 минут после включения.

Ответ: 8.

На этой задаче многие попались. Будьте внимательны.

3. В ходе химической реакции количество исходного вещества (реагента), которое еще не вступило в реакцию, со временем постепенно уменьшается. На рисунке эта зависимость представлена графиком. На оси абсцисс откладывается время в минутах, прошедшее с момента начала реакции, на оси ординат – масса оставшегося реагента, который еще не вступил в реакцию (в граммах). Определите по графику, сколько граммов реагента вступило в реакцию за три минуты?



Ответ: 12.

Если вы получили 8 или что-то другое – что ж, внимательно читайте условие.

Обратите внимание: в этих задачах мы рассматривали графики зависимостей одной величины от другой – то есть графики функций. В Главе 14 этой книги мы дадим математическое определение функции и займемся исследованием функций.

Еще одна простая задача, доступная любому гуманитарию. Все, что нужно - элементарная логика и умение считать без калькулятора.

4. Клиент хочет арендовать автомобиль на сутки для поездки протяженностью 500 км. В таблице приведены характеристики трех автомобилей и стоимость их аренды. Помимо аренды клиент обязан оплатить топливо для автомобиля на всю поездку. Какую сумму в рублях заплатит клиент за аренду и топливо, если выберет самый дешевый вариант?

Цена дизельного топлива – 19 рублей за литр, бензина – 22 рублей за литр, газа – 14 рублей за литр.

Автомобиль	Топливо	Расход топлива (л. на 100 км)	Арендная плата (руб. за 1 сутки)
A	Дизельное	7	3700
Б	Бензин	10	3200
В	Газ	14	3200

Считаем без калькулятора!

Очевидно, надо посчитать расход топлива для каждого автомобиля и прибавить стоимость аренды.

Для автомобиля A получим: $7 \cdot 5 \cdot 19 + 3700 = 4365$ рублей, для автомобиля B: $10 \cdot 5 \cdot 22 + 3200 = 4300$ рублей

и для автомобиля В: $14 \cdot 5 \cdot 14 + 3200 = 4180$ рублей.

Ответ: 4180.

В следующем задании есть небольшой подвох.

5. В таблице даны условия банковского вклада в трех различных банках. Предполагается, что клиент кладет на счет 30000 рублей на срок 1 год. В каком банке к концу года вклад окажется наибольшим? В ответе укажите сумму этого вклада в конце года (в рублях).

Банк	Обслуживание счета*	Процентная ставка (% годовых)**
A	40 руб./год	2,1
Б	5 руб./месяц	2,4
В	Бесплатно	1

- * В начале года или месяца со счета снимается указанная сумма в уплату за ведение счета.
 - ** В конце года вклад увеличивается на указанное количество процентов.

Обязательно проверьте, какой ответ у вас получился. Если 30660 – значит, вы не заметили «подвоха».

Вот правильное решение:

Обратите внимание, что плата за обслуживание счета берется в начале месяца или года – прежде, чем начисляются проценты.

Для банка А получаем:

$$30000-40=29960$$
 рублей $29960+\left(rac{2,1}{100}\cdot 29960
ight)=30589,16$ рублей

Для банка Б:

$$30000-5\cdot 12=29940$$
 рублей $29940+\left(rac{2,4}{100}\cdot 29940
ight)=30658,56$ рублей

Для банка В:

$$30000 + \left(\frac{1}{100} \cdot 30000\right) = 30300$$
 рублей.

Ответ: 30658,56.

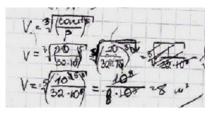
А как вы думаете, откуда все-таки банк берет деньги? Неужели только за обслуживание счетов? И что выше – процентные ставки банка по кредиту или процентные ставки по вкладу?

Вы убедились, что среди заданий ЕГЭ есть очень простые. Вроде и ошибиться в них негде. Откуда же берутся неправильные ответы?

Оказывается, и у двоечника, и у «ботаника» одна и та же беда – арифметические ошибки. Раз вы их делаете – значит, в школе вас не научили считать быстро и правильно. Часто учителя в младшей школе показывают детям такие сложные приемы, какими ни один профессор не пользуется. Вот потому математика и кажется скучной, занудной и противной.

Чуть позже, в главе 5, я покажу вам приемы быстрого счета. В этом деле, как и в любом другом, есть свои секреты. Но сначала – о том, откуда берутся ошибки.

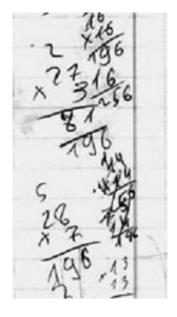
1. Верный путь к потере драгоценных баллов – грязь в вычислениях. Что-то исправлено, что-то зачеркнуто, одна цифра карябается поверх другой. Взгляните на свои черновики.

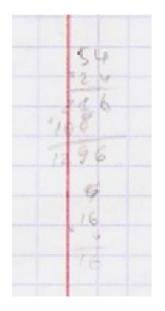


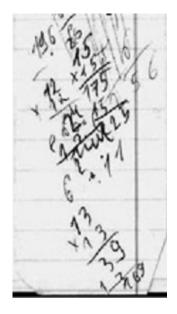
Что, похоже? :-) Пишите разборчиво. Нам бумаги не жалко. Если что-то неправильно – лучше всю строчку напишите заново, только не исправляйте одно на другое!

- 2. Второй источник ошибок столбик. Почему-то многие, считая в столбик, стараются сделать это
- очень быстро,
- очень мелкими циферками, в уголке тетради,
- карандашом.

Вот что получается:







Вы что, стесняетесь считать в столбик?! Ну и зря! Все считают в столбик, и я тоже. В этом нет ничего плохого.

3. Полезно знать, что скобки в выражении ставятся не просто так!

Запись $5\cdot(3+100)$ означает, что число 5 умножается на 3 (будет 15), число 5 умножается на 100 (получается 500), результаты складываются и получается 515.

$$5 \cdot (3 + 100) = 5 \cdot 3 + 5 \cdot 100 = 15 + 500 = 515.$$

Если скобки убрать, получится совсем другое число, проверьте, $5 \cdot 3 + 100 = 115$. А многие учащиеся игнорируют скобки в математических выражениях, мол, «для себя пишу».

Иногда встречается и такое:

Это все равно что письмо без знаков препинания. А читать как, если две фразы перемешались? Вот что должно быть:

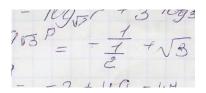
$$\cos^2 \alpha = 1 - \frac{49}{625} = \frac{576}{625};$$

 $\sqrt{\frac{576}{625}} = \frac{24}{25}.$

Помните, что знак равенства ставим не где попало, а только между равными величинами.

4. Больше всего арифметических ошибок связано с дробями. Если вы делите дробь на дробь – пользуйтесь тем, что $\frac{a}{b}:\frac{c}{d}=\frac{a}{b}\cdot\frac{d}{c}.$

Помните, что дробную черту всегда можно заменить знаком деления : И никаких многоэтажных дробей!



Видите трехэтажную дробь? Так делать не надо! Этот «гамбургер» к математике отношения не имеет.

5. Это вам для самоконтроля. Если на ЕГЭ в задании из части В — то есть в задачах 1-14 — вы получили в ответе $\frac{2}{3}$, или π , или $\sqrt{2}$, или 2x - ответ неверный. Придется решать задачу заново.

Да, кстати, как записывать ответ?

На экзамене вам выдадут специальные бланки. На одном из них вы увидите таблицу для записи ответов части В. В каждую клеточку таблицы вписываете один символ, то есть цифру, знак «минус» или десятичную запятую.

Помните, что ответ в части В ЕГЭ по математике должен быть целым числом или конечной десятичной дробью.

Глава 3.

Текстовая задача – верный балл на ЕГЭ! Единый алгоритм решения.

Задачи на движение. От рассказа – к уравнению. Как выбрать переменные.

Секреты решения уравнений.

Что такое a^2 , a^3 и \sqrt{a} . Из чего можно извлекать корень.

Формулы сокращенного умножения.

Движение по течению и против течения.

Текстовые задачи на движение, работу, проценты, сплавы и смеси – верный балл на ЕГЭ. Ничего сложного в них нет. Нужен лишь здравый смысл и внимательное чтение условия.

Я всегда начинаю курс подготовки к ЕГЭ именно с текстовых задач. Им посвящен первый диск моего видеокурса «Получи пятерку».

Полезно помнить, что задачи на движение и работу решаются по единому алгоритму. О нем я подробно расскажу, но сначала – несколько вопросов по программе младшей школы.

Запишите в виде математического выражения:

- 1) x на 5 больше у
- 2) x в пять раз больше y
- 3) z на 8 меньше, чем x
- 4) z меньше x в 3,5 раза
- 5) t_1 на 1 меньше, чем t_2
- 6) частное от деления a на b в полтора раза больше b
- 7) квадрат суммы x и y равен 7
- 8) x составляет 60 процентов от y
- $9) \ m$ больше n на 15 процентов

Пока не напишете – в ответы не подглядывайте! :-)

Обычно выпускник долго думает, как же это «x на 5 больше y». А в школе в этот момент «проходят» первообразные и интегралы :-)

Итак, правильные ответы:

1)
$$x = y + 5$$
.

x больше, чем y. Разница между ними равна пяти. Значит, чтобы получить бо́льшую величину, надо к меньшей прибавить разницу.

2)
$$x = 5u$$

x больше, чем y, в пять раз. Значит, если y умножить на 5, получим x.

3)
$$z = x - 8$$

z меньше, чем x. Разница между ними равна 8. Чтобы получить меньшую величину, надо из большей вычесть разницу.

4)
$$z = x : 3, 5$$

5)
$$t_1 = t_2 - 1$$

 t_1 меньше, чем t_2 . Значит, если из большей величины вычтем разницу, получим меньшую.

6)
$$a:b=1,5b$$

7)
$$(x+y)^2 = 7$$

Напомним, что

сумма - это результат сложения двух или нескольких слагаемых;

разность - это результат вычитания;

произведение – результат умножения двух или нескольких множителей; частное – результат деления чисел.

8)
$$x = 0.6y$$

Мы говорили, что $60\%y = \frac{60}{100} \cdot y = 0,6y$

9)
$$m = 1,15n$$

Если n принять за 100%, а m на 15 процентов больше, то m=115%n=1,15n.

Чаще всего в вариантах ЕГЭ встречаются задачи на движение.

Два автомобиля едут по дороге, лодка плывет по течению, а затем против течения, велосипедист обгоняет пешехода. Общая формула:

$$S = v \cdot t$$

то есть расстояние = скорость · время.

Из этой формулы можно выразить скорость $v=\frac{S}{t}$ или время $t=\frac{S}{v}$.

Запомните, что в качестве переменной х удобнее всего выбирать скорость. Тогда задача точно решится!

Внимательно читаем условие. В нем уже все есть. Да и вообще в любом вопросе всегда содержится ответ :-)

1. Из пункта A в пункт B, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 4 часа позже автомобилиста. Ответ дайте в км/ч.

Что обозначить за x? Очевидно, скорость велосипедиста – ведь ее и надо найти. Автомобилист проезжает на 40 километров в час больше. Значит, скорость автомобилиста равна x+40.

Нарисуем таблицу. Сразу внесем в нее расстояние. Из условия задачи известно, что и велосипедист, и автомобилист проехали по 50 км. Можно внести в таблицу скорость – она равна x и x+40 для велосипедиста и автомобилиста соответственно. Теперь заполним графу «время».

Найдем его по формуле: $t=\frac{S}{v}$. Для велосипедиста получим $t_1=\frac{50}{x}$, для автомобилиста $t_2=\frac{50}{x+40}$ и тоже запишем в таблицу.

Вот что получается:

	V	t	S
велосипедист	x	$t_1 = \frac{50}{x}$	50
автомобилист	x + 40	$t_2 = \frac{50}{x + 40}$	50

Остается записать, что велосипедист прибыл в конечный пункт на 4 часа позже автомобилиста. Позже – значит, времени он затратил больше. Это значит, что t_1 на четыре больше, чем t_2 , то есть

$$t_2 + 4 = t_1$$
$$\frac{50}{x + 40} + 4 = \frac{50}{x}$$

Смотрите, как легко решается это уравнение:

$$\frac{50}{x+40} - \frac{50}{x} = 4$$

В левой части уравнения приводим дроби к одному знаменателю. Правую часть пока не трогаем. Общий знаменатель равен x (x + 40).

Первую дробь домножим на (x+40), то есть и числитель и знаменатель умножим на (x+40), вторую – на x (и числитель и знаменатель).

Получим:

$$\frac{50(x+40) - 50x}{x(x+40)} = 4$$

$$\frac{50x + 2000 - 50x}{x(x+40)} = 4$$

$$\frac{2000}{x(x+40)} = 4$$

Разделим обе части нашего уравнения на 4 (или умножим на $\frac{1}{4}$). Очевидно, оно станет проще. Но почему-то многие учащиеся забывают это делать, и в результате получаются сложные уравнения и шестизначные числа в качестве дискриминанта.

$$\frac{500}{x(x+40)} = 1$$

Умножим обе части уравнения на x(x+40). Получим:

$$x\left(x+40\right) = 500$$

Раскроем скобки и перенесем всё в левую часть:

$$x^2 + 40x - 500 = 0$$

Получили квадратное уравнение. Напомним, что квадратным называется уравнение вида $ax^2 + bx + c = 0$. Решается оно стандартно.

Сначала находим дискриминант по формуле $D = b^2 - 4ac$, а затем корни по формуле

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

В нашем уравнении a = 1, b = 40, c = -500.

Найдем дискриминант D = 1600 + 2000 = 3600 и корни:

$$x_1 = 10, x_2 = -50.$$

Ясно, что x_2 не подходит по смыслу задачи, так как скорость велосипедиста не может быть отрицательной.

Ответ: 10.

Если вы забыли, что значит «возвести в квадрат», «возвести в куб» или «извлечь корень» – давайте вспомним. Ведь мы договорились, что в этой книге непонятных слов и символов не будет :-)

Возвести число в квадрат - означает умножить его само на себя.

$$a^2 = a \cdot a$$

Например,
$$5^2 = 25, 6^2 = 36, 8^2 = 64$$
.

Обратите внимание, что и $\left(-8\right)^2=64$, то есть уравнение $x^2=64$ имеет два решения: 8 и -8.

Квадрат любого числа всегда неотрицателен. Это очевидно - ведь если умножить положительное число на положительное, в результате получится число положительное. Как говорится, «плюс» умножить на «плюс» – получится «плюс». Если умножить «минус» на «минус» – тоже получится «плюс». А ноль в квадрате равен нулю.

Возвести число в куб - значит умножить его само на себя три раза.

$$a^3 = a \cdot a \cdot a$$

Например,
$$1^3 = 1$$
, $2^3 = 8$, $(-3)^3 = -27$.

Куб числа может быть отрицательным.

Арифметический квадратный корень из числа а – это такое неотрицательное число, квадрат которого равен a. Обозначается \sqrt{a} .

$$(\sqrt{a})^2 = a$$

$$\sqrt{a} \ge 0, a \ge 0$$

Например,

$$\sqrt{9} = 3$$

$$\sqrt{0} = 0$$

$$\sqrt{49} = 7$$

$$\sqrt{169} = 13$$

Обратите внимание:

- 1) Квадратный корень можно извлекать только из неотрицательных чисел
- 2) Выражение \sqrt{a} всегда неотрицательно. Например, $\sqrt{25} = 5$. А вот $-5 = -\sqrt{25}$.

Таблицу квадратов чисел от 10 до 30 лучше знать наизусть. Она приведена в конце этой книги, в справочных материалах.

Нам понадобятся также формулы сокращенного умножения:

$$(a-b)(a+b) = a^2 - b^2$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Выучите их наизусть.

Еще одна задача про велосипедиста.

2. Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 70 км. На следующий день он отправился обратно со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.

Пусть скорость велосипедиста на пути из A в B равна x. Тогда его скорость на обратном пути равна x+3. По условию задачи, расстояние между городами A и B-70 км, значит, в графе «расстояние» в обеих строчках пишем одно и то же -70 км. Осталось записать время.

Поскольку $t=\frac{S}{v}$, то на путь из A в B велосипедист затратит время $t_1=\frac{70}{x}$, а на обратный путь время $t_2=\frac{70}{x+3}$.

	v	t	S
туда	x	$t_1 = \frac{70}{x}$	70
обратно	x+3	$t_2 = \frac{70}{x+3}$	70

На обратном пути велосипедист сделал остановку на 3 часа и в результате затратил столько же времени, сколько на пути из A в B. Это значит, что на обратном пути он крутил педали на 3 часа меньше.

Значит, t_2 на три меньше, чем t_1 . Получается уравнение:

$$\frac{70}{x+3} + 3 = \frac{70}{x}$$

Группируем слагаемые. Всё, что с иксом, соберем в левой части уравнения. Все, что без икса – в правой части:

$$\frac{70}{x+3} - \frac{70}{x} = -3$$

Приводим дроби к одному знаменателю:

$$\frac{70(x+3) - 70x}{x(x+3)} = 3$$

$$\frac{70\cdot 3}{x\left(x+3\right)} = 3$$

Делим обе части уравнения на 3, получаем:

$$\frac{70}{x\left(x+3\right)} = 1$$

Умножим обе части уравнения на x(x+3), раскроем скобки и всё соберем в левой части.

$$x^2 + 3x - 70 = 0$$

Находим дискриминант. Он равен $9 + 4 \cdot 70 = 289$.

Найдем корни уравнения:

Найдем корни уравнения: $x_1=7$. Это вполне правдоподобная скорость велосипедиста. А ответ $x_2=-10$ не подходит, так как скорость велосипедиста должна быть положительна

Ответ: 7.

Следующий тип – задачи о движении по воде. Например, теплоход, катер или моторная лодка плывет по речке, в которой есть течение.

Обычно в условии говорится о собственной скорости плавучей посудины и скорости течения. Запомним, что собственной скоростью называется скорость в неподвижной воде.

При движении по течению к собственной скорости прибавляется скорость течения. Течение помогает. Вниз по реке плыть легче, чем вверх.

Скорость судна при движении по течению реки равна сумме собственной скорости судна и скорости течения реки.

А если двигаться против течения? Течение будет мешать, относить назад. В этом случае скорость течения будет вычитаться из собственной скорости судна.

Скорость при движении против течения равна разности собственной скорости судна и скорости течения.

В текстовых задачах считается, что плот, в отличие от катера, может двигаться только со скоростью течения. На плоту нет мотора, и грести веслами на нем трудно.

3. Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Помните, мы говорили, что в качестве неизвестной величины лучше всего выбрать скорость?

Пусть скорость лодки в неподвижной воде равна x.

Тогда скорость ее движения по течению равна x + 1, а против течения x - 1.

Расстояние и в ту, и в другую сторону одинаково и равно 255 км.

Внесем скорость и расстояние в таблицу.

Заполняем графу «время». Мы знаем, как это делать. При движении по течению $t_1=\frac{255}{x+1}$, при движении против течения $t_2=\frac{255}{x-1}$, причем t_2 на два часа больше, чем t_1 .

	v	t	S
по течению	x+1	$t_1 = \frac{255}{x+1}$	255
против течения	x-1	$t_2 = \frac{255}{x - 1}$	255

Условие « t_2 на два часа больше, чем t_1 » можно записать в виде алгебраического выражения:

$$t_2 - 2 = t_1$$

Составляем и решаем уравнение:

$$\frac{255}{x-1} - 2 = \frac{255}{x+1}$$

$$\frac{255}{x-1} - \frac{255}{x+1} = 2$$

Приводим дроби в левой части уравнения к одному знаменателю:

$$\frac{255(x+1) - 255(x-1)}{(x-1)(x+1)} = 2$$

Раскрываем скобки:

$$\frac{510}{r^2-1}=2$$

Делим обе части на 2, чтобы упростить уравнение:

$$\frac{255}{r^2 - 1} = 1$$

Умножаем обе части уравнения на $x^2 - 1$

$$x^2 - 1 = 255$$

$$x^2 = 256$$

Вообще-то это уравнение имеет два корня: 16 и -16 (оба этих числа при возведении в квадрат дают 256). Но, конечно же, отрицательный ответ не подходит по смыслу – скорость лодки должна быть положительной.

Ответ: 16.

Мы незаметно ввели новое понятие - «корни уравнения».

Напомним, что **корень уравнения** – такое число, при подстановке которого в уравнение получается верное равенство.

Решить уравнение - значит найти все его корни или доказать, что их нет.

4. Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.

Снова обозначим за x скорость течения. Тогда скорость движения теплохода по течению равна 15+x, а скорость его движения против течения равна 15-x. Расстояние и в ту, и в другую сторону одинаково и равно 200 км.

Осталось заполнить графу «время».

Поскольку $t=\frac{S}{v}$, время t_1 движения теплохода по течению равно $\frac{200}{15+x}$, а время t_2 , которое теплоход затратил на движение против течения, равно $\frac{200}{15-x}$.

	v	t	S
по течению	15 + x	$\frac{200}{15+x}$	200
против течения	15-x	$\frac{200}{15-x}$	200

В пункт отправления теплоход вернулся через 40 часов после отплытия. 10 часов из этого времени длилась стоянка, следовательно, 30 часов теплоход был в пути, то есть плыл сначала по течению, затем – против течения.

Значит,
$$t_1 + t_2 = 30$$
.

$$\frac{200}{15+x} + \frac{200}{15-x} = 30$$

Прежде всего, разделим обе части уравнения на 10. Оно станет проще!

$$\frac{20}{15+x} + \frac{20}{15-x} = 3$$

Мы не будем подробно останавливаться на технике решения уравнения. Всё уже понятно – приводим дроби в левой части уравнения к одному знаменателю, затем умножаем обе части уравнения на $225-x^2$, получаем квадратное уравнение $x^2=25$. Поскольку скорость течения положительна, получаем: x=5.

Ответ: 5.

Вы, наверное, заметили, как все эти задачи похожи. Текстовые задачи хороши еще и тем, что ответ легко проверить с точки зрения здравого смысла. Ясно, что расстояние, которое пройдет пешеход за три часа, никак не может быть равно тысяче километров, а скорость теплохода, идущего вверх по реке, не должна быть меньше скорости течения.

5. Баржа в 10:00 вышла из пункта A в пункт B, расположенный в 15 км от A. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась в пункт A в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.

Пусть скорость течения равна x. Тогда по течению баржа плывет со скоростью 7+x, а против течения со скоростью 7-x.

Сколько времени баржа плыла? Ясно, что надо от 16 отнять 10, а затем вычесть время стоянки. Обратите внимание, что 1 час 20 минут придется перевести в часы: 1 час 20 минут равно $1\frac{1}{3}$ часа. Получаем, что суммарное время движения баржи (по течению и против) равно $4\frac{2}{3}$ часа.

	v	t	S
по течению	7+x	t_1	15
против течения	7-x	t_2	15

$$t_1 + t_2 = 4\frac{2}{3}$$

Возникает вопрос – какой из пунктов, A или B, расположен выше по течению? A какая разница? B данной задаче это неважно. Ведь в уравнение входит сумма t_1+t_2 , равная $\frac{15}{7+x}+\frac{15}{7-x}$.

Итак,
$$\frac{15}{7+x} + \frac{15}{7-x} = 4\frac{2}{3}$$
.

Решим это уравнение. Число $4\frac{2}{3}$ в правой части уравнения представим в виде неправильной дроби: $4\frac{2}{3}=\frac{14}{3}$.

Приведем дроби в левой части уравнения к общему знаменателю, раскроем скобки и упростим. Получим:

$$30 \cdot 7 = \frac{14}{3} \cdot (49 - x^2)$$

Работать с дробными коэффициентами неудобно! Если разделить обе части уравнения на 14 и умножить на 3, оно станет значительно проще:

$$45 = 49 - x^2$$
$$x^2 = 4$$

Поскольку скорость течения положительна, x=2.

Ответ: 2.

Глава 4.

Задачи на работу. Два тракториста, два программиста...

Задачи про бассейн. Правила решения.

Критик, стань помощником! – или как получить от окружающих то, что вам нужно? Один из секретов успешных людей.

Следующий тип заданий, часто встречающийся в вариантах ЕГЭ по математике, – задачи на работу. Они тоже решаются по одной-единственной формуле: $A = p \cdot t$.

Здесь A – работа, t – время, а величина p – **производительность** (по смыслу является скоростью работы). Она показывает, сколько работы сделано в единицу времени.

Мини-пекарня печет булочки. Количество булочек, испеченных за день, – это производительность пекарни.

Художник в мастерской расписывает ёлочные шарики. Его производительность – количество расписанных шариков в день.

Бригада строит тоннель метро. Производительность бригады – сколько метров тоннеля построено за месяц.

Труба наполняет бассейн. Количество литров воды в минуту также можно назвать производительностью трубы.

Правила решения таких задач очень просты.

- 1. $A = p \cdot t$, то есть работа = производительность \cdot время. Из этой формулы легко найти t или p.
- 2. Если объем работы не важен и в задаче нет данных, позволяющих его найти, то работа принимается за единицу.

Например, построен дом (один). Написана книга (одна). А вот если речь идет о количестве кирпичей, булочек, страниц или построенных домов – работа как раз и равна этому количеству.

- 3. В качестве переменной удобно взять именно производительность.
- 4. Если трудятся двое рабочих (два экскаватора, два завода...) их производительности складываются.

Покажем, как это применяется на практике.

1. Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?

Так же, как в задачах на движение, заполним таблицу.

В колонке «работа» и для первого, и для второго рабочего запишем: 110. В задаче спрашивается, сколько деталей в час делает второй рабочий, то есть чему равна его производительность. Примем ее за x. Тогда производительность первого рабочего равна x+1 (он делает на одну деталь в час больше). Поскольку $t=\frac{A}{p}$, время работы первого рабочего равно $t_1=\frac{110}{x+1}$, время работы второго равно $t_2=\frac{110}{x}$.

	p	t	A
первый рабочий	x+1	$t_1 = \frac{110}{x+1}$	110
второй рабочий	x	$t_2 = \frac{110}{x}$	110

Первый рабочий выполнил заказ на час быстрее. Следовательно, t_1 на 1 меньше, чем t_2 , то есть

$$t_1 = t_2 - 1$$
$$\frac{110}{x+1} = \frac{110}{x} - 1$$

Мы уже решали такие уравнения. Оно сводится к квадратному:

$$x^2 + x - 110 = 0$$

Дискриминант равен 441. Корни уравнения: $x_1 = 10, x_2 = -11$.

Очевидно, производительность рабочего не может быть отрицательной – ведь он производит детали, а не уничтожает их :-) Значит, отрицательный корень уравнения не подходит по смыслу.

Ответ: 10.

2. Двое рабочих, работая вместе, могут выполнить работу за 12 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?

В этой задаче (в отличие от предыдущей) ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу.

А что же обозначить за переменные?

Mы уже говорили, что за переменную удобно обозначить производительность. Пусть x – производительность первого рабочего. Производительность второго тоже нужна, и ее мы обозначим за y.

По условию, первый рабочий за два дня делает такую же часть работы, какую второй – за три дня. Значит, 2x=3y. Отсюда $y=\frac{2x}{3}$.

Трудясь вместе, эти двое сделали всю работу за 12 дней. При совместной работе производительности складываются, значит,

$$(x+y) \cdot 12 = 1$$
$$\left(x + \frac{2}{3}x\right) \cdot 12 = 1$$
$$\frac{5}{3}x \cdot 12 = 1$$
$$20x = 1$$
$$x = \frac{1}{20}.$$

Итак, первый рабочий за день выполняет $\frac{1}{20}$ всей работы. Значит, на всю работу ему понадобится 20 дней.

Ответ: 20.

3. Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объемом 99 литров?

Примем производительность первой трубы за x. Именно эту величину и требуется найти в задаче. Тогда производительность второй трубы равна x+1, поскольку вторая пропускает на один литр в минуту больше, чем первая. Заполним таблицу:

	p	t	A
первая труба	x	$t_1 = \frac{110}{x}$	110
вторая труба	x+1	$t_2 = \frac{99}{x+1}$	99

Первая труба заполняет резервуар на две минуты дольше, чем вторая. Значит, $t_1\!-t_2\!=\!2.$ Составим уравнение:

$$\frac{110}{x} - \frac{99}{x+1} = 2$$

и решим его.

Ответ: 10.

Всевозможные задачи про две трубы, наполняющие какой-либо резервуар для воды, – это тоже задачи на работу. В них также фигурируют знакомые вам величины – производительность, время и работа.

А что делать, если вы все равно не понимаете, как сокращать дроби или решать квадратные уравнения?

Ну, вы же ходите в школу! :-)

Помните, что учительница математики может оказать вам неоценимую помощь в подготовке к ЕГЭ. Ваша задача – превратить ее из придирчивого критика в доброжелательного консультанта. Это возможно. Более того – это нужно сделать. Именно сейчас, когда время до экзамена еще есть.

Понаблюдайте — ведь многие ваши товарищи с легкостью обращаются к педагогу за помощью, а другие готовы остаться неграмотными, но ни за что не подойдут и не спросят. Почему, как вы думаете? Почему одни без труда получают ответ на интересующий их вопрос, а у других бесконечный «конфликт с учительницей»? Более того, «конфликт с учительницей» как бы оправдывает незнание предмета и нежелание разбираться.

В чем дело?

Возможно, вы читали книгу Малкольма Гладуэлла «Гении и аутсайдеры». Эта книга стала бестселлером. Она – о том, каким закономерностям подчиняется жизнь гениев и как помочь детям и подросткам достичь успеха. И еще, почему вообще одни люди достигают успеха, а другие – нет. О том, что самое главное даже – не родиться «умным», а развивать свои способности.

И вот в этой книге есть неожиданные результаты исследований, проведенных в Америке несколько лет назад. Исследования касались того, как ведут себя с учителями (да и вообще со взрослыми) дети из обеспеченных семей и дети из бедных семей.

Оказывается, у детей из обеспеченных семей в большей степени развит так называемый, практический интеллект – интуитивное знание о том, что сказать, как действовать, чтобы достичь максимального результата.

Такие ребята свободнее общаются с учителями, чувствуют себя комфортнее, разбираются в правилах, знают свои права, могут повернуть разговор в нужную сторону. Они обращаются к учителям с просьбами – и достигают успеха.

А вот дети из бедных семей обычно не умеют добиваться желаемого, не могут управлять ситуацией – их этому не учили. Они безынициативны! Они даже не пытаются повлиять на обстоятельства, а принимают их как должное: «Да, учительница нехорошая, злая, поэтому я никогда не выучу математику». Они могут пять лет вздыхать, что в школе ничему не учат, но не пойдут искать хорошую школу. А знаете ли вы, что нельзя научить – можно

научиться! Если у вас нет желания научиться, то даже самая лучшая, добрая и знающая учительница не сможет вас научить. Желание – это огромная движущая сила и половина пути к успеху во всем!

Удивительно, что граница между этими двумя типами поведения у американских подростков проходит четко между социальными классами.

Я не знаю, насколько это верно для российского общества. Однако факт остается фактом – одни люди умеют обращаться за помощью и получать ее, а другие – нет. Я замечала это много раз.

Но кто вам мешает научиться? :-)

Конечно, если вы просто подойдете к своей учительнице и скажете: «Я не понимаю математику!» – результата не будет. Такая фраза слишком абстрактна и не располагает к ответу. Учительница может ответить, например, что ей вас жалко. Или наоборот – выдаст какую-либо характеристику вашей личности. И то и другое неконструктивно.

А вам ведь нужен положительный результат, поэтому задавайте очень конкретные вопросы. Просите объяснить, как приводить дроби к общему знаменателю; как раскрывать скобки или как решать именно это уравнение.

Обращаясь к своей школьной учительнице, называйте ее по имени-отчеству: «Анна Георгиевна, расскажите, пожалуйста, как складывать дроби». Вот увидите — это подействует! Это позитивно действует на всех учителей и преподавателей без исключения. Работая с группой школьников, я замечаю, что одни просто вламываются в класс, в лучшем случае буркнув «здрасьти!», а другие здороваются более грамотно: «Добрый день, Анна Георгиевна». Второй вариант приветствия мне нравится намного больше:-)

Еще важная деталь – обращайтесь за помощью в подходящий момент, когда ваша учительница действительно может вам ответить. Если педагог занят, договоритесь об удобном времени консультации. Добивайтесь своего. Помните – у вас есть право на получение образования.

Для чего? Не только для того, чтобы сдать ЕГЭ на положительную оценку. И не только для того, чтобы поступить в вуз.

Оказывается, один из секретов успешных людей – умение договариваться, умение строить отношения. Есть даже такой афоризм – «Никому еще не удавалось разбогатеть в одиночку». Найти общий язык с учительницей, сформулировать вопрос и получить ответ, повернуть ситуацию в свою пользу – всё это не менее важно в жизни, чем знание тригонометрических формул или таблицы производных.

А скорее всего – во много раз важнее! Так что тренируйтесь быть успешным человеком, не теряйте времени! :-)

Глава 5.

Задачи на проценты. Полезные формулы.

Сплавы, смеси, растворы. Изюм и виноград.

Задачи на движение по окружности.

Что такое средняя скорость.

Как решать системы уравнений.

Приемы быстрого счета: легко и без калькулятора! Принцип KISS.

Вернемся к задачам на проценты. С этой темой мы уже познакомились в первой главе. В частности, вывели ценное правило:

за 100% мы принимаем ту величину, с которой сравниваем.

Запомним еще несколько полезных формул:

если величину х увеличить на р процентов, получим

$$x \cdot \left(1 + \frac{p}{100}\right);$$

если величину х уменьшить на р процентов, получим

$$x \cdot \left(1 - \frac{p}{100}\right);$$

если величину ${\bf x}$ увеличить на ${\bf p}$ процентов, а затем уменьшить на ${\bf q}$ процентов, получим

$$x \cdot \left(1 + \frac{p}{100}\right) \cdot \left(1 - \frac{q}{100}\right);$$

если величину х дважды увеличить на р процентов, получим

$$x \cdot \left(1 + \frac{p}{100}\right)^2;$$

если величину х дважды уменьшить на р процентов, получим

$$x \cdot \left(1 - \frac{p}{100}\right)^2$$
.

Все эти соотношения выводятся элементарно. В самом деле, если величина x увеличилась на p% – это значит, что к x прибавили $\frac{p}{100} \cdot x$. Вынесем х за скобки:

$$x + \frac{p}{100}x = x \cdot \left(1 + \frac{p}{100}\right).$$

Остальные формулы получаются аналогично.

Воспользуемся ими для решения задач.

1. В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 8%, а в 2010 году – на 9% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

По условию, в 2009 году число жителей выросло на 8%, то есть стало равно $40000 \cdot 1,08 = 43200$ человек.

А в 2010 году число жителей выросло на 9%, теперь уже по сравнению с 2009 годом. Получаем, что в 2010 году в квартале стало проживать $40000 \cdot 1, 08 \cdot 1, 09 = 47088$ жителей.

Ответ: 47088.

2. В понедельник акции компании подорожали на некоторое количество процентов, а во вторник подешевели на то же самое количество процентов. В результате

они стали стоить на 4% дешевле, чем при открытии торгов в понедельник. На сколько процентов подорожали акции компании в понедельник?

На первый взгляд кажется, что в условии ошибка и цена акций вообще не должна измениться. Ведь они подорожали и подешевели на одно и то же число процентов! Но не будем спешить.

Пусть при открытии торгов в понедельник акции стоили x рублей. К вечеру понедельника они подорожали на p% и стали стоить $x\cdot\left(1+\frac{p}{100}\right)$ рублей. Теперь уже эта величина принимается за 100%, и к вечеру вторника акции подешевели на p% по сравнению с этой величиной.

Соберем данные в таблицу:

	в понедельник утром	в понедельник вечером	во вторник вечером
стоимость акций	x	$x \cdot \left(1 + \frac{p}{100}\right)$	$x \cdot \left(1 + \frac{p}{100}\right) \left(1 - \frac{p}{100}\right)$

По условию, акции в итоге подешевели на 4%.

Получается, что

$$x \cdot \left(1 + \frac{p}{100}\right) \left(1 - \frac{p}{100}\right) = x \cdot \left(1 - \frac{4}{100}\right)$$

Поделим обе части уравнения на x (ведь он не равен нулю, значит, делить на него можно) и вспомним, что $(a-b)\,(a+b)=a^2-b^2$. Применим эту формулу в левой части уравнения:

$$1 - \frac{p^2}{100} = 1 - \frac{4}{100}$$
$$\frac{p^2}{100} = \frac{4}{100}$$

По смыслу задачи, p > 0.

Получаем, что p = 20.

3. Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 20000 рублей, через два года был продан за 15842 рублей.

Эта задача тоже решается по одной из формул, приведенных в начале главы. Холодильник стоил 20000 рублей. Его цена два раза уменьшилась на %, и теперь она равна

$$2000 \left(1 - \frac{p}{100}\right)^2 = 15842$$
$$\left(1 - \frac{p}{100}\right)^2 = \frac{15842}{20000}$$
$$\left(1 - \frac{p}{100}\right)^2 = \frac{7921}{10000}$$

Извлечем корень из обеих частей уравнения:

$$1 - \frac{p}{100} = \frac{89}{100}$$
$$p = 11.$$

4. Четыре рубашки дешевле куртки на 8%. На сколько процентов пять рубашек дороже куртки?

Пусть стоимость рубашки равна x, стоимость куртки y. Как всегда, принимаем за сто процентов ту величину, с которой сравниваем. В данном случае это цена куртки. Тогда стоимость четырех рубашек составляет 92% от цены куртки, то есть 4x = 0,92y.

Стоимость одной рубашки – в 4 раза меньше: x=0.23y а стоимость пяти рубашек: $5x=1,15y=\frac{115}{100}y=115\%y$. Получили, что пять рубашек на 15% дороже куртки.

Ответ: 15.

Следующий тип – задачи на растворы, смеси и сплавы. Они встречаются не только в математике, но и в химии. Мы покажем самый простой способ их решения.

5. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

В решении подобных задач помогает картинка. Изобразим сосуд с раствором схематично – так, как будто вещество и вода в нем не перемешаны между собой, а разделены, как в коктейле. И подпишем, сколько литров содержат сосуды и сколько в них процентов вещества. Концентрацию получившегося раствора обозначим x.

$$+$$
 вода $7\,\pi$ = $x\%$ от $12\,\pi$

Первый сосуд содержал $0,12\cdot 5=0,6$ литра вещества. Во втором сосуде была только вода. Значит, в третьем сосуде столько же литров вещества, сколько и в первом:

$$0, 12 \cdot 5 = \frac{x}{100} \cdot 12$$
$$x = 5.$$

6. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Пусть масса первого раствора равна x. Масса второго – тоже x. В результате получили раствор массой 2x. Рисуем картинку.

 $^{^{1}}$ Напомним, что **концентрацией** называется отношение объема вещества к объему раствора. Или – отношение массы вещества к массе раствора.

Масса вещества в первом растворе равна 15% от x, то есть 0,15x. Масса вещества во втором растворе 0,19x.

Получаем: 0,15x+0,19x=0,34x

Масса вещества в третьем растворе составляет p% от 2x, то есть равна $\frac{p}{100} \cdot 2x$

Получим: $0,34x = \frac{p}{100} \cdot 2x$

Отсюда x = 17.

Ответ: 17.

7. Виноград содержит 90% влаги, а изюм – 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Внимание! Если вам встретилась задача «о продуктах», то есть такая, где из винограда получается изюм, из абрикосов курага, из хлеба сухари или из молока творог – знайте, что на самом деле это задача на растворы.

Виноград тоже можно условно изобразить как раствор. В нем есть вода и «сухое вещество». У «сухого вещества» сложный химический состав, а по его вкусу, цвету и запаху можно понять, что это именно виноград, а не картошка.

Изюм получается, когда из винограда испаряется вода. При этом количество «сухого вещества» остается постоянным. В винограде содержалось 90% воды, значит, «сухого вещества» было 10%. В изюме 5% воды и 95% «сухого вещества». Пусть из x кг винограда получилось 20 кг изюма. Тогда

$$10\%$$
 от $x = 95\%$ от 20

Составим уравнение:

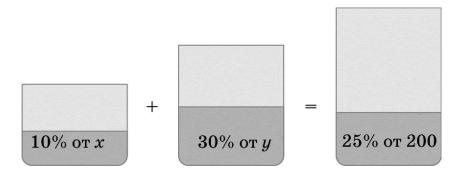
 $0,1x = 0,95 \cdot 20$

и найдем x.

Ответ: 190.

8. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Пусть масса первого сплава равна x, а масса второго равна y. В результате получили сплав массой $x+y=200\,$ кг.



Запишем систему уравнений:

$$\begin{cases} x + y = 200 \\ 0, 1x + 0, 3y = 0, 25 \cdot 200 \end{cases}$$

Первое уравнение – масса получившегося сплава, второе – масса никеля.

Нам нужно найти такие x и y, чтобы при подстановке в оба уравнения они давали верные равенства.

Как решить эту систему?

Прежде всего, упростим второе уравнение. Умножим обе его части на 10, чтобы коэффициенты стали целыми. Ведь с целыми коэффициентами проще работать, чем с дробными.

$$\begin{cases} x + y = 200 \\ x + 3y = 500 \end{cases}$$

Выразим x из первого уравнения: x = 200 - y.

Во второе уравнение вместо x подставим выражение 200-y

$$200 - y + 3y = 500.$$

Получили уравнение с одной переменной. Решая его, получим, что y = 150.

Подставив в первое уравнение y = 150, получаем, что x = 50.

По условию, надо найти, на сколько килограмм масса второго сплава больше массы первого.

Ответ: 100.

9. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Пусть масса первого раствора x, масса второго равна y. Масса получившегося раствора равна x+y=10. Запишем два уравнения, для количества кислоты.

$$\begin{cases} 0,3x+0,6y=0,36 (x+y+10) \\ 0,3x+0,6y+0,5\cdot 10=0,41 (x+y+10) \end{cases}$$

Решаем получившуюся систему. Сразу умножим обе части уравнений на 100, поскольку с целыми коэффициентами удобнее работать, чем с дробными. Раскроем скобки

$$\begin{cases} 30x + 60y = 36x + 36y + 360 \\ 30x + 60y + 500 = 41x + 41y + 410 \end{cases}$$
$$\begin{cases} 4y - x = 60 \\ 11x - 19y = 90 \end{cases}$$

Выразим x из первого уравнения: x = 4y - 60.

Подставим во второе уравнение вместо x выражение 4y-60. Получим уравнение с одной переменной:

$$11(4y - 60) - 19 = 90.$$

Решив его, найдем y = 30.

Подставим y=30 в первое уравнение. Тогда x=60.

Ответ: 60.

Задачи на движение по окружности на первый взгляд кажутся сложными. В них тоже применяется формула $S=v\cdot t$. Правда, есть одна хитрость, о которой мы расскажем по ходу дела.

10. Из пункта А круговой трассы выехал велосипедист, а через 30 минут следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз.

Найдите скорость мотоциклиста, если длина трассы равна 30~км. Ответ дайте в $\kappa m/4$.

Во-первых, переведем минуты в часы, поскольку скорость надо найти в км/ч. Скорости участников обозначим за x и y. В первый раз мотоциклист обогнал велосипедиста через 10 минут, то есть через $\frac{1}{6}$ часа после старта. До этого момента велосипедист был в пути 40 минут, то есть $\frac{2}{3}$ часа.

Запишем эти данные в таблицу:

	v	t	S
велосипедист	x	$\frac{2}{3}$	$\frac{2}{3}x$
мотоциклист	y	$\frac{1}{6}$	$\frac{1}{6}y$

Оба проехали одинаковые расстояния, то есть $\frac{1}{6}y = \frac{2}{3}x$.

Затем мотоциклист второй раз обогнал велосипедиста. Произошло это через 30 минут, то есть через $\frac{1}{2}$ часа после первого обгона.

Нарисуем вторую таблицу.

	v	t	S
велосипедист	x	$\frac{1}{2}$	$\frac{1}{2}x$
мотоциклист	y	$\frac{1}{2}$	$\frac{1}{2}y$

А что можно сказать о расстояниях, которые они проехали? Мотоциклист обогнал велосипедиста. Значит, он проехал на один круг больше. Это и есть секрет данной задачи. Один круг – это длина трассы, она равна 30 км. Вот и второе уравнение:

$$\frac{1}{2}y - \frac{1}{2}x = 30$$

Решим получившуюся систему.

$$\begin{cases} \frac{1}{6}y = \frac{2}{3}x \\ \frac{1}{2}y - \frac{1}{2}x = 30 \end{cases}$$
$$\begin{cases} y = 4x \\ y - x = 60 \end{cases}$$

Получим, что x=20,y=80. В ответ запишем скорость мотоциклиста.

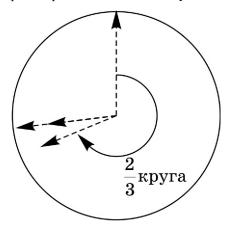
Ответ: 80.

11. Часы со стрелками показывают 8 часов 00 минут. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Это, пожалуй, самая трудная из текстовых задач $E\Gamma$ Э. Конечно, есть легкий путь – берем часы, крутим стрелки и видим, что в четвертый раз стрелки поравняются через 4 часа, ровно в 12.00.

А если у вас часы электронные?

За один час минутная стрелка проходит один круг, а часовая $\frac{1}{12}$ часть круга. Пусть их скорости равны 1 (круг в час) и $\frac{1}{12}$ (круга в час). Старт – в 8.00. Найдем время, за которое минутная стрелка в первый раз догонит часовую



Минутная стрелка пройдет на $\frac{2}{3}$ круга больше, поэтому уравнение будет таким:

$$1 \cdot t - \frac{1}{12}t = \frac{2}{3}$$

Решив его, получим, что $t = \frac{8}{11}$ часа.

Итак, в первый раз стрелки поравняются через $\frac{8}{11}$ часа.

Пусть во второй раз они поравняются через время z. Минутная стрелка пройдет расстояние $1\cdot z$, а часовая $\frac{1}{12}z$, причем минутная стрелка пройдет на один круг больше. Запишем уравнение:

$$1 \cdot z - \frac{1}{12}z = 1$$

Решив его, получим, что $z=\frac{12}{11}$ часа. Итак, через $\frac{12}{11}$ часа стрелки поравняются во второй раз, еще через $\frac{12}{11}$ часа – в третий, и еще через $\frac{12}{11}$ часа – в четвертый.

Старт был в 8.00. Найдем, через какое время стрелки поравняются в четвертый раз: $\frac{8}{11} + 3 \cdot \frac{12}{11} = \frac{44}{11} = 4$. Итак, стрелки поравняются через 4 часа, то есть 240 минут.

Ответ полностью согласуется с «экспериментальным» решением! :-)

На экзамене по математике вам может встретиться задача о нахождении средней скорости. Запомним, что средняя скорость **не равна** среднему арифметическому скоростей. Она находится по специальной формуле:

$$v_{\text{средняя}} = \frac{S_{\text{общее}}}{t_{\text{общее}}}$$

Если участков пути было два, то

$$v_{\text{средняя}} = \frac{S_1 + S_2}{t_1 + t_2}$$

12. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Мы не знаем, каким было расстояние, которое преодолел путешественник. Знаем только, что оно было одинаковым в обе стороны, туда и обратно.

Для простоты примем это расстояние за 1 (одно море). Тогда время, которое путешественник плыл на яхте, равно $\frac{1}{20}$, а время, затраченное на полет, равно $\frac{1}{480}$. Общее время равно $\frac{1}{20}+\frac{1}{480}=\frac{25}{480}=\frac{5}{96}$.

Средняя скорость равна $2:\frac{5}{96}=38,4$ км/ч.

Ответ: 38,4.

Покажем еще один эффектный прием, помогающий быстро решить систему уравнений в задаче.

13. Андрей и Паша красят забор за 9 часов. Паша и Володя красят этот же забор за 12 часов, а Володя и Андрей – за 18 часов. За сколько часов мальчики покрасят забор, работая втроем?

Мы уже решали задачи на работу и производительность. Правила те же. Отличие лишь в том, что здесь работают трое, и переменных будет тоже три. Пусть x – производительность Андрея, y – производительность Паши, а z – производительность Володи. Забор, то есть величину работы, примем за 1 – ведь мы ничего не можем сказать о его размере.

	производительность	Работа
Андрей	x	1
Паша	y	1
Володя	z	1
Вместе	x + y + z	1

Андрей и Паша покрасили забор за 9 часов. При совместной работе производительности складываются. Запишем уравнение:

$$(x+y) \cdot 9 = 1$$

Аналогично

$$(y+z)\cdot 12 = 1$$

$$(x+z) \cdot 18 = 1$$

Тогла

$$\begin{cases} x + y = \frac{1}{9}, \\ y + z = \frac{1}{12}, \\ x + z = \frac{1}{18}; \end{cases}$$

Можно искать z,y и z по отдельности, но лучше просто сложить все три уравнения. Получим, что

$$2(x+y+z) = \frac{1}{9} + \frac{1}{12} + \frac{1}{18}$$
$$(x+y+z) = \frac{1}{8}$$

Значит, работая втроем, Андрей, Паша и Володя красят за час одну восьмую часть забора. Весь забор они покрасят за 8 часов.

Ответ: 8.

14. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 67%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Нарисуем таблицу. Ситуации, о которых говорится в задаче («если бы зарплата мужа увеличилась, если бы стипендия дочки уменьшилась...») назовем «ситуация А» и «ситуация В».

	муж	жена	дочь	общий доход
в реальности	x	y	z	x+y+z
ситуация А	2x	y	z	$1,67\left(x+y+z\right)$
ситуация В	x	y	$\frac{1}{3}z$	$0,96\left(x+y+z\right)$

Остается записать систему уравнений.

$$\begin{cases} 2x + y + z = 1,67 (x + y + z) \\ x + y + \frac{1}{3}z = 0,96 (x + y + z) \end{cases}$$

Но что мы видим? Два уравнения и три неизвестных! Мы не сможем найти x, y и z по отдельности. Да это и не нужно. Ведь в ответе нам нужно записать отношение зарплаты жены к общему доходу семьи, то есть $\frac{y}{(x+y+z)}$.

Поэтому возьмем первое уравнение и из обеих его частей вычтем сумму (x+y+z). Получим:

$$x = 0,67 \left(x + y + z \right)$$

 \mathfrak{I} Это значит, что зарплата мужа составляет 67% от общего дохода семьи.

Во втором уравнении мы тоже вычтем из обеих частей выражение x+y+z, упростим и получим, что

$$z = 0.06 \left(x + y + z \right)$$

Значит, стипендия дочки составляет 6% от общего дохода семьи. Тогда зарплата жены составляет 27% общего дохода.

Ответ: 27.

В видеокурсе «Текстовые задачи на $E\Gamma \Im$ по математике» я рассматриваю эти и другие задачи на движение, работу, проценты, сплавы, смеси, а также на определение средней скорости и движение по окружности.

Вы знаете, что правила проведения ЕГЭ не разрешают пользоваться калькулятором на экзамене по математике. На самом деле калькулятор там и не нужен. Все задачи решаются без него. Главное – внимание, аккуратность и некоторые секретные приемы.

1. Начнем с главного правила.

Если какое-то вычисление можно упростить - упростите его.

Например, такое уравнение с «дьявольскими» коэффициентами:

$$666x^2 + 999x - 666 = 0$$

Семьдесят процентов выпускников решают его «в лоб». Считают дискриминант по формуле $D=b^2-4ac$, после чего говорят, что корень невозможно извлечь без калькулятора. Но ведь можно разделить левую и правую части уравнения на 333. Получится

$$2x^2 + 3x - 2 = 0$$

Какой способ проще? :-)

2. Скорее всего, вы не любите умножение в столбик. Да, никому не нравилось в четвертом классе решать скучные «примеры». Однако перемножить числа во многих случаях можно и без столбика, в строчку. Это намного быстрее.

$$385 \cdot 7 = 300 \cdot 7 + 80 \cdot 7 + 5 \cdot 7 = 2100 + 560 + 35 = 2660 + 35 = 2695$$

 $18 \cdot 17 = 18 \cdot 10 + 18 \cdot 7 = 180 + 10 \cdot 7 + 8 \cdot 7 = 180 + 70 + 56 = 250 + 56 = 306$

Обратите внимание, что мы начинаем не с меньших разрядов, а с больших. Это удобно.

3. Теперь – деление. Нелегко в столбик разделить 9450 на 2100. Но вспомним, что знак деления : и дробная черта – одно и то же. Запишем 9450 : 2100 в виде дроби и сократим эту дробь:

$$\frac{9450}{2100} = \frac{945}{210} = \frac{315}{70} = \frac{63}{14} = \frac{9}{2} = 4,5$$

Другой пример.

$$364:1040 = \frac{364}{1040} = \frac{182}{520} = \frac{91}{260} = \frac{7}{20} = 0,35$$

4. Как быстро и без всяких столбиков возвести в квадрат двузначное число? Применяем одну из формул сокращенного умножения:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$23^{2} = (20+3)^{2} = 20^{2} + 2 \cdot 20 \cdot 3 + 3^{2} = 400 + 120 + 9 = 529$$

$$39^{2} = (30+9)^{2} = 30^{2} + 2 \cdot 30 \cdot 9 + 9^{2} = 900 + 540 + 81 = 1521$$

$$44^{2} = (40+4)^{2} = 40^{2} + 2 \cdot 40 \cdot 4 + 4^{2} = 1600 + 320 + 16 = 1936.$$

Иногда удобно использовать и другую формулу:

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$78^2 = (80-2)^2 = 6400^2 - 320 + 4 = 6084$$

$$89^2 = (90-1)^2 = 8100 - 180 + 1 = 7201$$

5. Числа, оканчивающиеся на 5, в квадрат возводятся моментально.

Допустим, надо найти квадрат числа A5 (A – не обязательно цифра, любое натуральное число). Умножаем A на A+1 и к результату приписываем 25. Всё!

Например: $45^2=2025$, то есть $4\cdot 5=20$ и приписали 25. $65^2=4225$, то есть $6\cdot 7=42$ и приписали 25.

$$125^2 = 15625$$
, то есть $12 \cdot 13 = 156$ и приписали 25 .

Этот способ полезен не только для возведения в квадрат, но для извлечения квадратного корня из чисел, оканчивающихся на 25.

41

6. А как вообще извлечь квадратный корень без калькулятора? Покажем два способа.

Первый способ – разложение подкоренного выражения на множители.

Например, найдем $\sqrt{6561}$

Число 6561 делится на 3 (так как сумма его цифр делится на 3). Разложим 6561 на множители:

$$6561 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 81 = 81 \cdot 81$$

$$\sqrt{6561} = 81$$

Найдем $\sqrt{2916}$. Это число делится на 2. На 3 оно тоже делится. Раскладываем 2916 на множители.

$$\sqrt{2916} = \sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 27} = 2 \cdot 27 = 54$$

Еще пример.

$$\sqrt{4356} = \sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 11 \cdot 11} = 2 \cdot 27 = 66$$

Есть и второй способ. Он удобен, если число, из которого надо извлечь корень, никак не получается разложить на множители.

Например, надо найти $\sqrt{5041}$. Число под корнем — нечетное, оно не делится на 3, не делится на 5, не делится на 7... Можно и дальше искать, на что же оно все-таки делится, а можно поступить проще — найти этот корень подбором.

Очевидно, что в квадрат возводили двузначное число, которое находится между числами 70 и 80, поскольку $70^2=4900, 80^2=6400$, а число 5041 находится между ними. Первую цифру в ответе мы уже знаем, это 7.

Последняя цифра в числе 5041 равна 1. Поскольку $1^2=1,9^2=81$, последняя цифра в ответе — либо 1, либо 9. Проверим:

$$71^2 = (70+1)^2 = 4900 + 140 + 1 = 5041$$
. Получилось!

Найдем $\sqrt{2809}$.

$$50^2 = 2500, 60^2 = 3600.$$
 Значит, первая цифра в ответе – 5.

В числе 2809 последняя цифра – девятка. $3^2=9, 7^2=49$. Значит, последняя цифра в ответе – либо 3, либо 9.

Проверим:

$$53^2 = (50+3)^2 = 2500 + 300 + 9 = 2809.$$

Если число, из которого надо извлечь квадратный корень, заканчивается на 2, 3, 7 или 8 – значит, квадратный корень из него будет числом иррациональным. Потому что ни один квадрат целого числа не заканчивается на 2, 3, 7 или 8.

Помните, что в задачах части В на ЕГЭ ответ должен быть записан в виде целого числа или конечной десятичной дроби. Это значит, что ответ – рациональное число 2 .

7. Квадратные уравнения часто встречаются нам в задачах ЕГЭ базового уровня. В них нужно считать дискриминант, а затем извлекать из него корень. И совсем не обязательно искать корни из пятизначных чисел. Во многих случаях дискриминант удается разложить на множители.

Например, в уравнении

 $^{^2}$ О том, какие числа называются натуральными, целыми, дробными, рациональными, подробно рассказано в следующей главе.

$$2x^2 + 90x - 8100 = 0$$

 $D = 8100 + 8 \cdot 8100 = 8100 (1 + 8) = 810 \cdot 9$
 $\sqrt{D} = 90 \cdot 3 = 270$,

8. Иногда дискриминант удается посчитать по известной формуле сокращенного умножения:

$$a^2 - b^2 = (a - b)(a + b).$$

Вот такое уравнение вполне может получиться при решении текстовой задачи:

$$9x^{2} - 37x + 4 = 0$$

$$D = b^{2} - 4ac = 37^{2} - 4 \cdot 9 \cdot 4 = 37^{2} - 12^{2} = (37 - 12)(37 + 12) = 25 \cdot 49$$

$$\sqrt{D} = \sqrt{25 \cdot 49} = 5 \cdot 7 = 35$$

9. Еще одна ситуация, в которой выражение под корнем можно разложить на множители, взята из задачи по геометрии.

Гипотенуза прямоугольного треугольника равна 39, один из катетов равен 36. Найти второй катет.

По теореме Пифагора, он равен $\sqrt{39^2-36^2}$. Можно долго считать в столбик, но проще применить формулу сокращенного умножения.

$$39^2 - 36^2 = (39 - 36)(39 + 36) = 3 \cdot 75 = 3 \cdot 3 \cdot 25$$

 $\sqrt{3 \cdot 3 \cdot 25} = 3 \cdot 5 = 15$

Главная мысль — ваши вычисления должны быть максимально простыми. Есть известный принцип, применяемый в программировании и дизайне. По-английски он звучит так: «Keep it simple, stupid!» 3 - и легко запоминается как KISS :-)

Отлично! Текстовые задачи вы освоили. Что дальше?

Есть в ЕГЭ еще одна выигрышная тема — задача на определение вероятности события. В 2013 году я записала полный видеокурс «Теория вероятностей на ЕГЭ по математике», и все подписчики нашей рассылки получают его бесплатно. Если вы его еще не получили — самое время это сделать.

Конечно, теория вероятностей сама по себе – серьезная наука, и многие из вас будут изучать ее в вузах. А пока – первое знакомство.

³«Не усложняй, чудило!»

Глава 6.

Теория вероятностей на ЕГЭ.

Что такое вероятность и как ее считать.

Независимые события.

Привет от Наполеона.

В 2012 году в варианты ЕГЭ по математике добавилась задача по теории вероятностей. И это замечательно! Потому что вы ее наверняка решите и получите еще один балл, который не будет лишним. Ведь для этого нужны лишь самые основные понятия теории вероятностей.

Случайным называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.

Вы выиграли в лотерею – случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте – тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут - и это тоже можно считать счастливой случайностью...

Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.

Начнем с простых примеров. Вы бросаете монетку. Орел или решка? Действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием.

Орел и решка – два возможных исхода испытания.

Орел выпадет в одном случае из двух возможных. Говорят, что вероятность того, что монетка упадет орлом, равна $\frac{1}{2}$.

Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть. Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом.

Вероятность выпадения тройки равна $\frac{1}{6}$ (один благоприятный исход из шести возмож-

Вероятность четверки – тоже $\frac{1}{6}$.

А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Очевидно, что вероятность не может быть больше единицы.

Вот другой пример. В пакете 25 яблок (и ничего больше). Из них 8 – красные, остальные - зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна $\frac{8}{25}$, а зеленое $-\frac{17}{25}$.

Вероятность достать красное или зеленое яблоко равна $\frac{8}{25}+\frac{17}{25}=1.$ Вероятность вытащить из этого пакета банан равна нулю.

Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.

1. В фирме такси в данный момент свободно 15 машин: 2 красных, 9 желтых и 4 зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.

Всего имеется 15 машин, то есть к заказчице приедет одна из пятнадцати. Желтых – девять, и значит, вероятность приезда именно желтой машины равна $\frac{9}{15}$, то есть 0,6.

2. В сборнике билетов по биологии всего 25 билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.

Очевидно, вероятность вытащить билет без грибов равна $\frac{23}{25}$, то есть 0,92.

3. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Роман Орлов. Найдите вероятность того, что в первом туре Роман Орлов будет играть с каким-либо бадминтонистом из России.

Ответ: 0,36.

Если вы получили $\frac{10}{26}$ – значит, у вас Роман Орлов играет в бадминтон сам с собой :-)

- 4. Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовет число кратное пяти?
 - 1, 2, 3, 4, **5**, 6, 7, 8, 9, **10**, 11... 100

Каждое пятое число из данного множества делится на 5. Значит, вероятность равна $\frac{1}{5}$.

- 5. Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.
- $1,\ 3,\ 5$ нечетные числа; $2,\ 4,\ 6$ четные. Вероятность нечетного числа очков равна $\frac{1}{2}$. Ответ: 0,5.
 - 6. Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?

Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.

Как вы думаете, сколько здесь возможных исходов?

Бросаем монету. У этого действия два возможных исхода: орел и решка Две монеты – уже четыре исхода:

орел		решка		
орел решка		орел	решка	

Три монеты? Правильно, 8 исходов, так как $2 \cdot 2 \cdot 2 = 2^3 = 8$.

Вот они:

орел	орел	орел
орел	орел	решка
орел	решка	орел
решка	орел	орел
орел	решка	решка
решка	орел	решка
решка	решка	орел
решка	решка	решка

Два орла и одна решка выпадают в трех случаях из восьми.

Ответ: $\frac{3}{8}$.

7. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Бросаем первую кость – шесть исходов. И для каждого из них возможны еще шесть - когда мы бросаем вторую кость. Получаем, что у данного действия – бросания двух игральных костей – всего 36 возможных исходов, так как $6^2=36$.

А теперь - благоприятные исходы:

- 26
- 3 5
- 4 4
- 5.3
- 6 2

Вероятность выпадения восьми очков равна $\frac{5}{36} \approx 0, 14$.

8. Стрелок попадает в цель с вероятностью 0,9. Найдите вероятность того, что он попадёт в цель четыре раза выстрела подряд.

Если вероятность попадания равна 0.9 – следовательно, вероятность промаха 0.1. Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна $0.9 \cdot 0.9 = 0.81$. А вероятность четырех попаданий подряд равна $0.9 \cdot 0.9 \cdot 0.9$

События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В. В нашей задаче – так и есть: результат каждого выстрела не зависит от предыдущих.

Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.

Значит, вероятность четырех попаданий подряд равна $0,9^4=0,6561.$

А если изменить условие? Что, если надо найти вероятность трех попаданий и одного промаха? Вероятность промаха равна 0,1. Значит, вероятность трех попаданий и одного промаха $0,9\cdot 0,9\cdot 0,9\cdot 0,1=0,0729$.

А что делать, если все-таки что-то вам непонятно?

Напомним – вы всегда можете подойти за помощью к учительнице. Это ваше право. Показывайте конкретную строчку в условии или решении и говорите, обращаясь по имениотчеству: «Пожалуйста, объясните, как это делать». Для нее такое объяснение – дело пятнадцати минут, а для вас – важный шаг в освоении математики.

Другой способ - мой видеокурс «Получи Пятерку». Больше тысячи абитуриентов уже подготовились по нему к ЕГЭ, сдали на отлично и стали студентами.

Теперь еще два слова о задачах.

Знаете ли вы, что каждая задача, с которой вы справились, - это еще и тренировка внимания?!

Я много раз наблюдала, как старшеклассники, решая задачу, забывают о том, что же они вообще ищут!

Или читают условие раз, другой и третий подряд, упорно «не замечая» какое-нибудь значимое слово.

Не всегда умеют (или – не хотят) говорить полными предложениями, с подлежащим, сказуемым и дополнениями, и выражают свою мысль примерно так: «Это на это плюс это на это». А с вами такое случается?

Учитесь говорить, друзья мои! Вы заметили, что в школе почти нет устных экзаменов? Подсчитано, что за весь учебный день – шесть-восемь уроков – у вас есть в среднем две минуты для устных ответов! А ведь не зря Наполеон Бонапарт сказал: «Кто не умеет говорить – карьеры не сделает».

Мы готовы перейти на следующий уровень: корни, степени и логарифмы. Вперед! У нас всё получится!

Глава 7.

Какие бывают числа? Натуральные, целые, рациональные, действительные...

Числовые множества.

Числа правят миром - так ли это?

Корни и степени.

Действия со степенями.

Задания ЕГЭ на вычисление и решение уравнений.

Знаете ли вы, какие бывают числа?

ЕГЭ по математике – экзамен практический. Однако основные математические понятия надо знать четко. Поэтому – небольшая лекция, специально для гуманитариев :-)

Первые числа, которыми люди начали пользоваться в доисторические еще времена, - **натуральные**, то есть целые и положительные: 1, 2, 3. . . Натуральные числа применяются для счета предметов. Они могут быть использованы в качестве номеров.

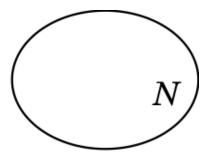
Число ноль не является натуральным. В самом деле, вряд ли вы скажете: «В комнате сидит ноль человек» :-)

Наименьшее натуральное число - единица. Числа 15, 475, 98764 - натуральные. Все вместе они составляют **множество** натуральных чисел, обозначаемое буквой N.

Что такое множество? Это одно из **первичных** понятий математики, то есть таких, которые лежат в основе логической системы и уже не определяются через другие понятия. Попробуйте объяснить, что такое точка.

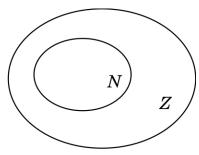
Или - что такое время? Ни один человек в мире еще не дал ответа на этот вопрос! Время, точка, множество – примеры первичных понятий.

Интуитивно мы понимаем, что множество - это набор или совокупность элементов, объединенных каким-либо общим признаком. Множества обычно обозначаются заглавными буквами. Множество натуральных чисел мы условно изобразим вот так – как будто все натуральные числа поместили внутрь нарисованного овала:



Конечно же, числа бывают не только натуральными. Тысячи лет назад индийцы открыли (или изобрели) число ноль и отрицательные числа. Теперь они для нас привычны. Проверьте баланс своего мобильного телефона. Он может быть положительным, отрицательным или нулевым. А когда-то европейцы - древние греки и римляне - долгое время обходились без нуля. Сейчас нам трудно это представить, не правда ли?

Натуральные числа, целые отрицательные числа и ноль вместе составляют множество целых чисел, которое обозначается Z:



Обратите внимание, что множество целых чисел включает в себя множество натуральных.

Кроме целых чисел, есть еще и дроби. Напомним, что дробь - это часть, доля, выражение вида $\frac{p}{q}$, где p - целое, а q - натуральное. Например, $\frac{1}{7}$ - это одна часть из семи, 0.25 - это двадцать пять сотых. Десятичные дроби также можно записать в виде $\frac{p}{q}$. Об

этом мы говорили в самом начале книги, в первой главе. Например, $0,25=\frac{25}{100}=\frac{1}{4}$. Целые числа (положительные и отрицательные) также можно записать в виде $\frac{p}{q}$ – хотя бы в виде дроби со знаменателем 1:

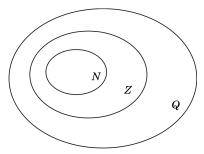
$$2 = \frac{2}{1};$$

$$0 = \frac{0}{1};$$

$$-5 = -\frac{5}{1}.$$

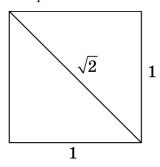
Все числа, которые можно записать в виде дроби $\frac{p}{q}$, называются **рациональными**.

 $4;-1,2;\frac{7}{8};1,26$ – примеры рациональных чисел. Множество рациональных чисел обозначается Q. Ясно, что оно включает в себя множество целых чисел.



Хорошо, но любое ли число можно записать в виде дроби $\frac{p}{a}$? Иными словами, все ли числа являются рациональными? Долгое время (в античности) считалось, что любое число можно записать в виде дроби с числителем и знаменателем. Дело в том, что для древних греков числа и их соотношения были почти священны. Пифагорейцы говорили: «Числа правят миром». Они верили, что все основные принципы мироздания можно выразить языком математики, что соотношения чисел определяют гармонию, закон и порядок природы, перед которым склоняют голову даже олимпийские боги. Греческое искусство, особенно архитектура, подчинялось правилам, канонам. Греки точно установили, какими должны быть пропорции в архитектуре - например, отношение диаметра колонны к ее длине, - чтобы здание было гармоничным. И все эти пропорции были отношениями целых чисел.

Но однажды в стройной и гармоничной системе божественных пропорций наметилась досадная брешь. Оказалось, что если нарисовать квадрат со стороной 1, его диагональ не выражается никакой дробью вида $\frac{p}{a}$.



По теореме Пифагора диагональ такого квадрата равна $\sqrt{2}$, то есть положительному числу, квадрат которого равен двум. Можно доказать, что это число не является рациональным. Но сами пифагорейцы не сразу смогли смириться с тем, что $\sqrt{2}$ невозможно записать в виде $\frac{p}{a}$ - ведь это наносило удар всей их философской системе!

Открытие долго держалось в тайне, пока наконец ученик Пифагора Гиппас не разгласил его. За это Гиппас был изгнан из школы Пифагора, бежал из города и утонул во время кораблекрушения. Греки увидели в этом возмездие богов и решили, что от таких чисел, как $\sqrt{2}$, лучше держаться подальше. Числа которые невозможно записать в виде $\frac{p}{q}$, такие, как $\sqrt{2}$, назвали **иррациональными**, то есть не-разумными, неправильными.

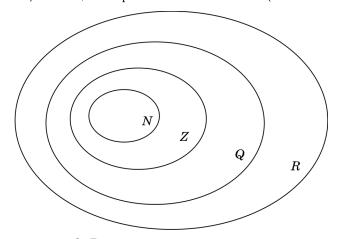
Но иррациональные числа ничуть не хуже рациональных! Они отнюдь не ограничиваются выражениями вида $\sqrt{2}$ или $\sqrt{3}$. К иррациональным относятся также

- число π отношение длины окружности к ее диаметру;
- число e, названное в честь Эйлера (об этом числе вы узнаете, изучая функции и производные);
- задающее золотое сечение число φ удивительное число Фибоначчи, вокруг которого построен весь детективный сюжет фильма «Код да Винчи»;
- числа вида $\log_2 5$, $\sin 23^\circ$;
- необозримое количество других чисел.

Давайте еще раз повторим, в чем разница между рациональными и иррациональными числами. Рациональное число можно представить в виде дроби $\frac{p}{q}$, например, $\frac{1}{3}$, $\frac{7}{11}$. А если мы просто поделим в столбик 7 на 11 - обнаружим интересную закономерность:

7:11=0,636363636363...

Мы видим, что цифры повторяются, то есть дробь является **периодической**. Таким образом, любое рациональное число можно записать в виде десятичной дроби - конечной или бесконечной периодической. А вот в числе π цифры не заканчиваются и не повторяются. Иррациональные числа - это бесконечные **непериодические** дроби. Вместе оба множества - рациональных и иррациональных чисел - образуют множество **действительных** (или вещественных) чисел, которое обозначается R (от слова real).



Как вы думаете – это всё? Все ли числа, какие только могут быть, содержатся в множестве действительных чисел? Или за его пределами еще что-то есть?

Для успешной сдачи ЕГЭ других чисел не нужно. Да и вроде мы назвали все возможные. Или нет?

О том, что же находится за пределами множества действительных чисел, вы можете прочитать в статье «Числовые множества» на моем сайте www.EGE-Study.ru. Это образовательный портал, где вы найдете полный курс подготовки к $E\Gamma 9$ по математике, видеокурсы по математике и другим предметам и очень много полезной информации. Заходите!

А мы продолжаем знакомство с понятиями «корни» и «степени». В этой главе будет много нового для вас теоретического материала. Формулы учите сразу. Через некоторое время вы привыкнете к ним, как к таблице умножения.

Запомним терминологию:

Степенью называется выражение вида а^с.

Число а - основание степени, число с - показатель степени.

По определению, $a^1 = a$.

 $a^2=a\cdot a$ (число а умножается само на себя два раза)

 $a^3 = a \cdot a \cdot a$ (число а умножается само на себя три раза)

Как вы думаете, сколько раз число a надо умножить само на себя, чтобы получить a^{25} ?

Для любого натурального, то есть целого положительного показателя \mathbf{n} , выражение $\mathbf{a}^{\mathbf{n}}$ равно

$$\underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot \dots \cdot a}_{n \text{ pas}}$$

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению, $\mathbf{a^0} = \mathbf{1}$.

Это верно для $a \neq 0$. Выражение 0^0 не определено.

Определим также, что такое степень с целым отрицательным показателем.

$$a^{-1} = \frac{1}{a},$$

$$a^{-2} = \frac{1}{a^2},$$

$$a^{-n} = \frac{1}{a^n}$$

Конечно, все это верно для $a \neq 0$, поскольку на ноль делить нельзя.

Например,

$$5^{-2} = \frac{1}{5^2} = \frac{1}{25};$$

$$(-3)^{-3} = \frac{1}{(-3)^3} = -\frac{1}{27};$$

$$2^{-6} = \frac{1}{2^6} = \frac{1}{64};$$

$$\left(\frac{1}{2}\right)^{-1} = 2;$$

$$0,01^{-1} = \left(\frac{1}{100}\right)^{-1} = 100;$$

$$\left(\frac{2}{7}\right)^{-1} = \frac{7}{2}.$$

Заметили? При возведении в минус первую степень дробь переворачивается.

$$\left(\frac{5}{3}\right)^{-2} = 1: \left(\frac{5}{3}\right)^2 = \frac{9}{25}.$$

Показатель степени бывает еще и **дробным**, то есть рациональным числом. Помните, чуть раньше мы говорили, что рациональными называются числа, которые можно записать в виде дроби $\frac{p}{q}$, где p – целое, q - натуральное.

По определению,

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$

Это верно при условии a > 0.

У нас появилось новое обозначение – корень **п-ной степени**. Поговорим о нем более подробно. Начнем с уже знакомого вам **арифметического квадратного корня**. Он обозначается так: \sqrt{a} .

Давайте вспомним, что корень из a - это такое неотрицательное число, квадрат которого равен a.

Если записать кратко,

 \sqrt{a} - такое число, что $\left(\sqrt{a}\right)^2=a,\sqrt{a}\geq 0.$

Выражение \sqrt{a} определено для $a \ge 0$.

Например, $\sqrt{25}=5; \sqrt{256}=16; \sqrt{\frac{1}{9}}=\frac{1}{3}; \sqrt{1}=1$. В этом случае мы говорим, что **извлекли** корень из числа.

Свойства арифметического квадратного корня:

$$\sqrt{a} \ge 0$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$

А вот выражение $\sqrt{a} + \sqrt{b}$ не равно $\sqrt{a+b}$. Легко проверить:

 $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$

 $\sqrt{9+16} = \sqrt{25} = 5$ - получился другой ответ.

Многие школьники говорят: «Избавились от корня». Мне совсем не нравится это выражение. Оно некорректно. Как именно избавились? Стерли ластиком? Выкинули в окно? – Непонятно! Более грамотно - сказать, что мы упростили выражение, **извлекли** корень.

Конечно же, число \sqrt{a} не для каждого a будет целым или рациональным. Мы уже говорили, что $\sqrt{2}$, например, - число иррациональное. Его не запишешь в виде обыкновенной дроби. Калькулятор дает приближенный, округленный ответ.

$$\sqrt{2} = 1,41421... \approx 1,41.$$

 $\sqrt{3}, \sqrt{7}, \sqrt{13}$ – тоже иррациональные числа. Ни одно из них нельзя записать в виде целого числа или обыкновенной дроби.

А что такое кубический корень, то есть $\sqrt[3]{a}$, как вы думаете? Правильно – такое число, которое при возведении в третью степень дает число a.

$$\left(\sqrt[3]{a}\right)^3 = \sqrt[3]{a} \cdot \sqrt[3]{a} \cdot \sqrt[3]{a} = a$$

Например, $\sqrt[3]{8} = 2$, так как $2^3 = 2 \cdot 2 \cdot 2 = 8$;

$$\sqrt[3]{1000} = 10$$
, так как $10^3 = 1000$;

$$\sqrt[3]{-\frac{1}{125}} = -\frac{1}{5}$$
, так как $\left(-\frac{1}{5}\right)^3 = -\frac{1}{125}$.

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Аналогично, корень четвертой степени из a – такое число, что $(\sqrt[4]{a})^4 = a$. Да и вообще для любого целого n выражение $\sqrt[n]{a}$ – такое число, что $(\sqrt[n]{a})^n = a$.

Заметим, что корень третьей, седьмой, двадцать первой - словом, любой нечетной степени, - можно извлекать из любых чисел - положительных, отрицательных чисел или нуля.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Найдите значение выражения. Ответ запишите в виде десятичной дроби:

1.
$$\sqrt[5]{32} = \sqrt[5]{2^5} = 2$$
.

$$2. \ \sqrt[4]{81} = \sqrt[4]{3^4} = 3.$$

3.
$$\sqrt[3]{0,001} = \sqrt[3]{0,1\cdot 0,1\cdot 0,1} = 0,1.$$

4.
$$\sqrt[4]{\frac{1}{625}} = \sqrt[4]{\frac{1}{5^4}} = \frac{1}{5}$$
.

5.
$$\sqrt[7]{(-128)} = \sqrt[7]{-1 \cdot 2^7} = -2$$
.

6.
$$\sqrt[3]{-\frac{1}{125}} = \sqrt[3]{-\frac{1}{5^3}} = -\frac{1}{5}$$
.

Решите уравнение:

7.
$$\sqrt{\frac{6}{4x-54}} = \frac{1}{7}$$

Это задание из варианта ЕГЭ. Что нужно сделать, как вы считаете? «Избавиться от корня»? Но это выражение некорректно. Как избавиться-то? На самом деле надо возвести в квадрат обе части уравнения. Ведь выражение под корнем в данном случае — такое число, квадрат которого равен $\frac{1}{7}$.

Возведём обе части в квадрат:

$$\frac{6}{4x - 54} = \frac{1}{49}.$$

Решим пропорцию:

$$4x - 54 = 6 \cdot 49;$$

$$4x = 348;$$

$$x = 87.$$

8.
$$\sqrt{\frac{2x+5}{3}} = 5$$

$$\frac{2x+5}{3} = 25;$$

$$2x + 5 = 75$$
:

$$x = 35$$
.

9.
$$\sqrt{-72 - 17x} = -x$$

Если уравнение содержит два корня, в ответ запишите меньший из них. (Так сказано в условии задачи).

Возведем обе части в квадрат:

$$-72 - 17x = (-x)^2$$

$$-72 - 17x = x^2$$

$$x^2 + 17x + 72 = 0$$

Корни уравнения: $x_1 = -8$; $x_2 = -9$. Проверка показывает, что оба корня подходят. В ответ записываем меньший из них, как и требовалось в условии.

Ответ: -9.

10.
$$\sqrt[3]{x-4} = 3$$

Как вы думаете, в какую степень надо возвести обе части уравнения?

Возводим в куб обе части.

$$x - 4 = 3^3$$
$$x - 4 = 27$$
$$x = 31.$$

Корни и степени – две взаимосвязанные темы. Корни можно записывать в виде степеней. Это удобно.

По определению,

$$a^{\frac{1}{2}} = \sqrt{a};$$
 $a^{\frac{1}{3}} = \sqrt[3]{a};$

в общем случае $a^{\frac{1}{n}} = \sqrt[n]{a}$.

Сразу договоримся, что основание степени a > 0.

Например,

$$25^{\frac{1}{2}} = 5;$$

$$8^{\frac{1}{3}} = 2;$$

$$81^{\frac{1}{4}} = 3;$$

$$100000^{\frac{1}{5}} = 10;$$

$$0,001^{\frac{1}{3}} = 0,1.$$

Выражение $a^{\frac{m}{n}}$ по определению равно $\sqrt[n]{a^m}$. При этом также выполняется условие a>0.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m.$$

Например,

$$8^{\frac{4}{3}} = (\sqrt[3]{8})^4 = 2^4 = 16;$$

$$a^{\frac{3}{5}} = \sqrt[5]{a^3};$$

$$b^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{b^2}}.$$

Запомним правила действий со степенями:

 $a^n \cdot a^m = a^{m+n}$ – при перемножении степеней показатели складываются

$$\frac{a^n}{a^m} = a^{m-n}$$
 – при делении степени на степень показатели вычитаются

$$(a^m)^n = (a^n)^m = a^{mn}$$
 – при возведении степени в степень показатели перемножаются

$$a^n \cdot b^n = (ab)^n$$

$$\frac{a^n}{h^n} = \left(\frac{a}{h}\right)^n$$

A теперь - практические задания из вариантов $E\Gamma \Im$. В них надо упростить выражения с корнями и степенями. Считаем без калькулятора! Обратите внимание на приемы, которыми мы пользуемся.

11.
$$\frac{\sqrt{2,8} \cdot \sqrt{4,2}}{\sqrt{0,24}} = \sqrt{\frac{2,8 \cdot 4,2}{0,24}} = \sqrt{\frac{2,8 \cdot 4,2}{0,24}} = \sqrt{\frac{7 \cdot 4 \cdot 7 \cdot 6}{4 \cdot 6}} = \sqrt{7 \cdot 7} = 7$$

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

12.
$$\frac{\left(2\sqrt{7}\right)^2}{14} = \frac{2^2 \cdot \left(\sqrt{7}\right)^2}{14} = \frac{4 \cdot 7}{14} = 2.$$

13.
$$\frac{\sqrt[9]{7} \cdot \sqrt[18]{7}}{\sqrt[6]{7}}$$
.

Запишите корни в виде степеней. Это намного удобнее.

$$\frac{\sqrt[9]{7} \cdot \sqrt[18]{7}}{\sqrt[6]{7}} = \frac{7^{\frac{1}{9}} \cdot 7^{\frac{1}{18}}}{\sqrt[7]{6}} = 7^{\frac{1}{9} + \frac{1}{18} - \frac{1}{6}} = 7^{\frac{1}{6} - \frac{1}{6}} = 7^0 = 1.$$

14.
$$\left(\frac{2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}}}{\sqrt[12]{2}}\right)^2$$
.

Запишите корень в знаменателе в виде степени и аккуратно примените правила действий со степенями. Две следующих задачи решаются аналогично.

$$\left(\frac{2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}}}{\sqrt[12]{2}}\right)^2 = \left(2^{\frac{1}{3} + \frac{1}{4} - \frac{1}{12}}\right)^2 = \left(2^{\frac{1}{2}}\right)^2 = 2.$$

15.
$$5 \cdot \sqrt[3]{9} \cdot \sqrt[6]{9} = 5 \cdot 9^{\frac{1}{3}} \cdot 9^{\frac{1}{6}} = 5 \cdot 9^{\frac{1}{3} + \frac{1}{6}} = 5 \cdot 9^{\frac{1}{2}} = 5 \cdot \sqrt{9} = 5 \cdot 3 = 15.$$

16. Найдите значение выражения $\frac{\sqrt{m}}{\sqrt[9]{m}\cdot \sqrt[18]{m}}$ при m=64.

$$\frac{\sqrt{m}}{\sqrt[9]{m} \cdot \sqrt[18]{m}} = \frac{m^{\frac{1}{2}}}{m^{\frac{1}{9}} \cdot m^{\frac{1}{18}}} = m^{\frac{1}{2} - \frac{1}{9} - \frac{1}{18}} = m^{\frac{1}{3}}.$$

Если m = 64, то $m^{\frac{1}{3}} = 4$.

17.
$$5^{0,35} \cdot 25^{0,32}$$

Приведите степени к одному основанию. Выбирайте самое простое. В данном случае это основание 5.

$$5^{0,36} \cdot 25^{0,32} = 5^{0,36} \cdot 5^{0,64} = 5^{0,36+0,64} = 5^1 = 5.$$

18.
$$35^{-4,7} \cdot 7^{5,7} : 5^{-3,7}$$

Разложите число 35 на множители. Запишите выражение в виде дроби и сократите ее.

$$35^{-4,7} \cdot 7^{5,7} : 5^{-3,7} = \frac{5^{-4,7} \cdot 7^{-4,7} \cdot 7^{5,7}}{5^{-3,7}} = 7 \cdot 5^{-1} = \frac{7}{5} = 1, 4.$$

19.
$$\left(\sqrt{3\frac{6}{7}-\sqrt{1\frac{5}{7}}}\right):\sqrt{\frac{3}{28}}$$

Переведите смешанные числа в неправильные дроби. Посмотрите, что можно вынести из-под корня.

$$\left(\sqrt{3\frac{6}{7}} - \sqrt{1\frac{5}{7}}\right) : \sqrt{\frac{3}{28}} = \\
= \left(\sqrt{\frac{27}{7}} - \sqrt{\frac{12}{7}}\right) : \frac{\sqrt{3}}{2\sqrt{7}} = \left(\frac{3\sqrt{3}}{\sqrt{7}} - \frac{2\sqrt{3}}{\sqrt{7}}\right) : \frac{\sqrt{3}}{2\sqrt{7}} = \frac{\sqrt{3}}{\sqrt{7}} : \frac{\sqrt{3}}{2\sqrt{7}} = \frac{\sqrt{3}}{\sqrt{7}} : \frac{2\sqrt{7}}{\sqrt{3}} = 2.$$

20.
$$0.8^{\frac{1}{7}} \cdot 5^{\frac{2}{7}} \cdot 20^{\frac{6}{7}}$$

Приведите степени к одному основанию. Число 0,8 лучше записать в виде обыкновенной дроби.

$$0,8^{\frac{1}{7}}\cdot 5^{\frac{2}{7}}\cdot 20^{\frac{6}{7}} = \left(\frac{4}{5}\right)^{\frac{1}{7}}\cdot 5^{\frac{2}{7}}\cdot (4\cdot 5)^{\frac{6}{7}} = \frac{4^{\frac{1}{7}}\cdot 5^{\frac{2}{7}}\cdot 4^{\frac{6}{7}}\cdot 5^{\frac{6}{7}}}{5^{\frac{1}{7}}} = 4\cdot 5 = 20.$$

21.
$$(4a)^3 : a^7 \cdot a^4$$

$$(4a)^3 : a^7 \cdot a^4 = \frac{4^3 \cdot a^3 \cdot a^4}{a^7} = 4^3 = 64.$$

$$22$$
. Найдите значение выражения $\frac{a^{3,33}}{a^{2,11} \cdot a^{2,22}}$ при $a=\frac{2}{7}$.

$$\frac{a^{3,33}}{a^{2,11} \cdot a^{2,22}} = \frac{a^{3,33}}{a^{3,33}} = 1.$$

23. Найдите значение выражения $\frac{6n^{\frac{1}{3}}}{n^{\frac{1}{12}} \cdot n^{\frac{1}{4}}}$ при n > 0.

$$\frac{6n^{\frac{1}{3}}}{n^{\frac{1}{12}} \cdot n^{\frac{1}{4}}} = 6 \cdot n^{\frac{1}{3} - \frac{1}{12} - \frac{1}{4}} = 6 \cdot n^{0} = 6.$$

24.
$$\frac{\left(\sqrt{13} + \sqrt{7}\right)^2}{10 + \sqrt{91}}$$

Воспользуйтесь формулой квадрата суммы. Найдите способ сократить дробь.

$$\frac{\left(\sqrt{13} + \sqrt{7}\right)^2}{10 + \sqrt{91}} = \frac{\left(\sqrt{13}\right)^2 + 2 \cdot \sqrt{13} \cdot \sqrt{7} + \left(\sqrt{7}\right)^2}{10 + \sqrt{91}} = \frac{13 + 2 \cdot \sqrt{13} \cdot \sqrt{7} + 7}{10 + \sqrt{91}} = \frac{20 + 2 \cdot \sqrt{91}}{10 + \sqrt{91}} = \frac{2 \cdot \left(10 + \sqrt{91}\right)}{10 + \sqrt{91}} = 2.$$

25. Найдите значение выражения
$$\dfrac{\sqrt[9]{\sqrt{m}}}{\sqrt{16\sqrt[9]{m}}}$$
, при $m>0$.

Не пугаемся! Записываем корни в виде степеней, применяем правила действий со степенями. И в следующих двух задачах – тоже.

$$\frac{\sqrt[9]{\sqrt{m}}}{\sqrt{16\sqrt[9]{m}}} = \frac{\left(m^{\frac{1}{2}}\right)^{\frac{1}{9}}}{\left(16 \cdot m^{\frac{1}{9}}\right)^{\frac{1}{2}}} = \frac{m^{\frac{1}{18}}}{4 \cdot m^{\frac{1}{18}}} = \frac{1}{4} = 0, 25.$$

26. Найдите значение выражения $\frac{\left(\sqrt{3\cdot a}\right)^2\cdot \sqrt[5]{a^3}}{a^{2,6}}$, при a>0.

$$\frac{\left(\sqrt{3} \cdot \mathbf{a}\right)^2 \cdot \sqrt[5]{\mathbf{a}^3}}{\mathbf{a}^{2,6}} = \frac{3 \cdot \mathbf{a}^2 \cdot \mathbf{a}^{\frac{3}{5}}}{\mathbf{a}^{2,6}} = \frac{3 \cdot \mathbf{a}^{2,6}}{\mathbf{a}^{2,6}} = 3.$$

27. Найдите значение выражения $\dfrac{15\cdot\sqrt[5]{\sqrt[28]{a}}-7\cdot\sqrt[7]{\sqrt[20]{a}}}{2\cdot\sqrt[35]{\sqrt[4]{a}}},$ при a>0.

$$\frac{15 \cdot \sqrt[5]{\sqrt[28]{a} - 7 \cdot \sqrt[7]{\sqrt[20]{a}}}}{2 \cdot \sqrt[35]{\sqrt[4a]{a}}} = \frac{15 \cdot \left(a^{\frac{1}{28}}\right)^{\frac{1}{5}} - 7 \cdot \left(a^{\frac{1}{20}}\right)^{\frac{1}{7}}}{2 \cdot \left(a^{\frac{1}{4}}\right)^{\frac{1}{35}}} = \frac{15 \cdot a^{\frac{1}{140}} - 7 \cdot a^{\frac{1}{140}}}{2 \cdot a^{\frac{1}{140}}} =$$

$$= \frac{8 \cdot a^{\frac{1}{140}}}{2 \cdot a^{\frac{1}{140}}} = \frac{8}{2} = 4.$$

Решите уравнения:

$$28.\ 2^{4-2x} = 64$$

Представьте правую часть уравнения как степень основанием 2.

Запомним правило: если степени равны, основания одинаковы, то и показатели тоже равны. Мы как будто «отбрасываем» одинаковые основания - и решаем алгебраическое уравнение.

Почему мы так делаем?

Для ответа на этот вопрос надо знать, что такое показательная функция, какие у нее свойства и график. Об этом вы можете прочитать, например, в моей статье «Показательная функция» на образовательном портале www.EGE-Study.ru

$$2^{4-2x} = 2^6$$
:

$$4 - 2x = 6;$$

$$x = -1$$
.

$$29. \left(\frac{1}{8}\right)^{-3-x} = 512$$

А здесь обе части уравнения надо привести к одному основанию. Как вы думаете, какое выбрать? Ведь $\frac{1}{8}=2^{-3}$. Представьте число 512 в виде степени с основанием 2.

$$(2^{-3})^{-3-x} = 2^9;$$

$$2^{9+3x} = 2^9$$
;

$$9 + 3x = 9$$
:

$$x = 0$$
.

$$30. \left(\frac{1}{9}\right)^{x-13} = 3$$

Представьте $\frac{1}{9}$ в виде степени с основанием 3 и воспользуйтесь тем, что $(a^m)^n = a^{mn}$.

$$(3^{-2})^{x-13} = 3;$$

$$3^{-2x+26} = 3^1$$
;

$$-2x + 26 = 1;$$

$$x = 12, 5.$$

$$31. \ 9^{-5-x} = 729$$

$$9^{-5-x} = 9^3;$$

$$-5 - x = 3;$$

$$x = -8$$
.

$$32. \ 16^{x-9} = \frac{1}{2}$$

$$2^{4x-36} = 2^{-1}$$
:

$$4x - 36 = -1;$$

$$x = 8,75.$$

$$33. \ 2^{3+x} = 0, 4 \cdot 5^{3+x}$$

Как же здесь привести обе части к одному основанию? Если не получается – попробуйте другой прием. Воспользуйтесь тем, что показатели степеней одинаковы.

$$\frac{2^{3+x}}{5^{3+x}} = 0, 4;$$

$$\left(\frac{2}{5}\right)^{3+x} = \frac{2}{5};$$

$$3+x=1;$$

$$x = -2$$
.

Глава 8.

Логарифмы. Неожиданный выход из тупика.

Определение логарифма.

Для каких чисел существуют логарифмы.

Действия с логарифмами.

Решение задач ЕГЭ.

Теперь вы знаете, что такое корни и степени. Вам известны правила действий с ними. Я надеюсь, что большинство задач из главы 7 вам удалось решить самостоятельно. Это значит, что и логарифмы вы легко освоите.

Давайте вернемся к уравнению $2^x = 8$.

Мы знаем, как его решать. Представляем обе части в виде степеней с основанием 2. Степени равны, основания равны, значит, равны и показатели:

$$2^x = a^3;$$

$$x = 3.$$

А если вам встретилось уравнение $2^x = 3$? Что делать?

Попробуйте представить число 3 в виде степени числа 2.

Очевидно, что $2^1 = 2$, а $2^2 = 4$. Но в какую же степень надо возвести число 2, чтобы получить 3? Что-то не удается подобрать! Неужели тупик?

Однажды мы уже встретились с подобной ситуацией. Уравнение $x^2=4$ решается легко, его корни $x_1=2$ и $x_2=-2$. А для решения уравнения $x^2=3$ нам понадобилось новое понятие – квадратный корень. Корнями уравнения являются числа $\sqrt{3}$ и $-\sqrt{3}$.

Для того чтобы решить уравнение $2^x = 3$, мы тоже введем новое понятие – **логарифм**.

Определение выучите наизусть.

Логарифмом числа b по основанию а называется показатель степени, в которую надо возвести число а, чтобы получить b.

Иными словами, логарифм числа b по основанию а – это такое число c, что $a^c=b$.

$$\log_a b = c \iff a^c = b$$

В выражении $\log_a b$ число а называется **основанием** логарифма. Обратите внимание, читается: «Логарифм b по основанию а».

Вернемся к нашему уравнению. Теперь мы можем записать его решение:

 $x=\log_2 3$. Это число – иррациональное, то есть бесконечная непериодическая десятичная дробь. Калькулятор дает ответ: $1,58496250072116\dots$

Итак, логарифм - это показатель степени. Например,

$$\log_2 16 = 4$$
, так как $2^4 = 16$;

$$\log_5 125 = 3$$
, так как $5^3 = 125$;

$$\log_3\left(\frac{1}{3}\right) = -1$$
, так как $3^{-1} = \frac{1}{3}$;

$$\log_{81} 9 = \frac{1}{2};$$

$$\log_6 \sqrt{6} = \frac{1}{2};$$

$$\log_{\frac{1}{2}}\left(\frac{1}{4}\right) = 2.$$

Логарифм с основанием 10 называется **десятичным** и обозначается lg. Например,

$$\lg 100 = 2$$
, $\lg 10000 = 4$, $\lg 0$, $001 = -3$, $\lg \sqrt{10} = \frac{1}{2}$.

А как вы думаете, чему равен $\log_2(-4)$? Существует ли вообще такое число?

Возведем число 2 в натуральную степень – получим целое положительное число. $2^1=2,\ 2^2=4,\ 2^5=32\dots$ Возведем в нулевую степень – получим 1. В отрицательную – получим дробь, например, $2^{-1}=\frac{1}{2},\ 2^{-3}=\frac{1}{8}.$ Дробные степени можно записывать как корни, об этом мы говорили, то есть $2^{\frac{1}{2}}=\sqrt{2},\ 2^{\frac{1}{3}}=\sqrt[3]{2}.$ Опять получаются положительные числа! В какую бы степень мы ни возводили положительное число 2 – ответ будет положительный, а $\log_2{(-4)}$ – не существует.

Запомним, что логарифмы определены только для положительных чисел.

Основание логарифма также выбирается положительным и не равным единице. В самом деле, выражение $\log_1 5$ не имеет смысла: в какую бы степень мы ни возвели число 1, мы получим единицу и ничего больше.

Итак, выражение $\log_a b$ определено при b > 0, a > 0, $a \ne 1$.

Свойства логарифмов:

$$a^{\log_a b} = b$$
:

$$\log_a a^c = c.$$

Каждая из этих двух формул представляет собой **основное логарифмическое тождество**. Просто оно записано в разной форме. Напомним, что тождество – математическое выражение, верное для всех значений переменных, при которых его левая и правая части определены.

Логарифм произведения равен сумме логарифмов:

$$\log_a(bc) = \log_a b + \log_a c.$$

Логарифм частного равен разности логарифмов:

$$\log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c.$$

Формула для логарифма степени. Обратите внимание – показатель степени «спрыгивает» перед логарифмом:

$$\log_a(b)^c = c \cdot \log_a b.$$

Формула перехода к другому основанию:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Частный (и очень важный) случай формулы перехода к другому основанию:

$$\log_a b = \frac{1}{\log_b a}.$$

А теперь – практика. В вариантах $E\Gamma \Im$ вы встретите и задачи на вычисление, и уравнения с логарифмами. Для того чтобы вам проще было решать такие задачи, рекомендую свой видеокурс «Алгебра на $E\Gamma \Im$ по математике».

4. $(\log_2 16) \cdot (\log_6 36)$

В какую степень надо возвести 2, чтобы получить 16? Непосредственно вычисляем оба логарифма, результаты перемножаем.

Ответ: 8

 $5. \log_4 \log_5 25$

Какой здесь порядок действий? Сначала вычисляем $\log_5 25$. Затем от полученного результата берем логарифм по основанию 4.

$$\log_4 \log_5 25 = \log_4 2 = \frac{1}{\log_2 4} = \frac{1}{2}.$$

6. $7 \cdot 5^{\log_5 4}$

Основания логарифма и степени одинаковы и равны 5. Применяем основное логарифмическое тождество.

$$7 \cdot 5^{\log_5 4} = 7 \cdot 4 = 28.$$

7.
$$\frac{24}{3^{\log_3 2}} = \frac{24}{2} = 12$$
.

8.
$$\log_3 8$$
, $1 + \log_3 10$

Любую формулу можно читать и слева направо, и справа налево. Чему равна сумма логарифмов с одинаковым основанием?

$$\log_3 8, 1 + \log_3 10 = \log_3 81 = 4.$$

9.
$$\log_{0,3} 10 - \log_{0,3} 3 = \log_{0,3} \frac{10}{3} = \log_{\frac{3}{10}} \frac{10}{3} = -1.$$

10. Найдите
$$\log_a \frac{a}{b^3}$$
, если $\log_a b = 5$

Применяем формулы для логарифма частного и логарифма степени.

$$\log_a \frac{a}{b^3} = \log_a a - \log_a (b^3) = 1 - 3 \cdot \log_a b = 1 - 3 \cdot 5 = 1 - 15 = -14.$$

11.
$$\frac{\log_6 \sqrt{13}}{\log_6 13}$$

Запишите $\sqrt{13}$ в виде степени и сократите дробь. Еще один способ – применить формулу перехода к другому основанию.

$$\frac{\log_6 \sqrt{13}}{\log_6 13} = \frac{\log_6 \left(13^{\frac{1}{2}}\right)}{\log_6 13} = \frac{1}{2}.$$

12.
$$\frac{\log_7 13}{\log_{49} 13}$$

В какой формуле присутствует частное логарифмов и чему оно равно?

Применим формулу $\frac{\log_c b}{\log_a a} = \log_a b$

$$\frac{\log_7 13}{\log_{49} 13} = \log_{49} 7 = \frac{1}{\log_7 49} = \frac{1}{2}.$$

13.
$$\frac{\log_3 18}{2 + \log_3 2}$$

Представьте число 2 в знаменателе в виде логарифма. Примените формулу суммы логарифмов.

$$\frac{\log_3 18}{2 + \log_3 2} = \frac{\log_3 18}{\log_3 9 + \log_3 2} = \frac{\log_3 18}{\log_3 18} = 1.$$

14. $64^{\log_8 \sqrt{3}}$

 $64 = 8^2$. Вспомним одно из свойств степеней: $a^{mn} = a^{nm}$.

$$64^{\log_8\sqrt{3}} = (8^2)^{\log_8\sqrt{3}} = (8^{\log_8\sqrt{3}})^2 = (\sqrt{3})^2 = 3.$$

15.
$$(3^{\log_2 3})^{\log_3 2}$$

И здесь тот же прием, что и в предыдущей задаче.

$$\left(3^{\log_2 3}\right)^{\log_3 2} = \left(3^{\log_3 2}\right)^{\log_2 3} = 2^{\log_2 3} = 3.$$

16.
$$6 \cdot \log_7 \sqrt[3]{7}$$

Используйте формулу логарифма степени.

$$6 \cdot \log_7 \sqrt[3]{7} = 6 \cdot \log_7 \left(7^{\frac{1}{3}}\right) = 6 \cdot \frac{1}{3} \cdot \log_7 7 = \frac{6}{3} = 2.$$

17.
$$\log_{0.8} 3 \cdot \log_3 1, 25$$

Переведите числа 0,8 и 1,25 в обыкновенные дроби – и станет ясно, как действовать дальше.

$$\log_{0,8} 3 \cdot \log_3 1, 25 = \log_{\frac{4}{5}} 3 \cdot \log_3 \frac{5}{4} = \frac{1}{\log_3 \frac{4}{5}} \cdot \log_3 \frac{5}{4} = \frac{\log_3 \frac{5}{4}}{\log_3 \frac{4}{5}} = \log_{\frac{4}{5}} \frac{5}{4} = -1.$$

18.
$$\log_{\sqrt{7}}^2 49$$

В этой задаче важен порядок действий. Сначала взяли $\log_{\sqrt{7}} 49$, затем результат возвели в квадрат. Поэтому и решать лучше по действиям. $\log_{\sqrt{7}} 49 = \log_{\sqrt{7}} 7^2 = \dots$

$$\log_{\sqrt{7}}^2 49 = \left(\log_{\sqrt{7}} 49\right)^2 = \left(\frac{\log_7 49}{\log_7 \sqrt{7}}\right)^2 = (2 \cdot 2)^2 = 4^2 = 16.$$

19.
$$\log_5 9 \cdot \log_3 25$$

Пользуйтесь формулой перехода к другому основанию!

$$\begin{split} \log_5 9 \cdot \log_3 25 &= \log_5 \left(3^2 \right) \cdot \log_3 \left(5^2 \right) = 2 \cdot \log_5 3 \cdot 2 \cdot \log_3 5 = 4 \cdot \log_5 3 \cdot \log_3 5 = \\ &= 4 \cdot \frac{\log_5 3}{\log_5 3} = 4. \end{split}$$

20.
$$5^{3+\log_5 2}$$

Логарифмы и степени – взаимосвязанные темы. Вспомните, чему равно a^{b+c} .

$$5^{3 + \log_5 2} = 5^3 \cdot 5^{\log_5 2} = 125 \cdot 2 = 250.$$

21.
$$\frac{9^{\log_5 50}}{9^{\log_5 2}}$$

В этой задаче вам тоже помогут свойства степеней.

$$\frac{9^{\log_5 50}}{9^{\log_5 2}} = 9^{\log_5 50 - \log_5 2} = 9^{\log_5 25} = 9^2 = 81.$$

22.
$$\log_{0.25} 2$$

Представьте 0,25 в виде обыкновенной дроби. Перейдите к другому основанию логарифма.

$$\log_{0,25} 2 = \log_{\frac{1}{4}} 2 = \frac{1}{\log_2 \frac{1}{4}} = 1 : (-2) = -0, 5. \log_{0,25} 2 = \log_{\frac{1}{4}} 2 = \frac{1}{\log_2 \frac{1}{4}} = 1 : (-2) = -0, 5.$$

23.
$$(1 - \log_2 12) \cdot (1 - \log_6 12)$$

Обратите внимание, что $12=6\cdot 2$. Представьте $\log_2 12$ в виде суммы логарифмов и упростите выражение.

$$(1 - \log_2 12) \cdot (1 - \log_6 12) = (1 - \log_2 (6 \cdot 2)) \cdot (1 - \log_6 (6 \cdot 2)) =$$

$$= (1 - \log_2 6 - \log_2 2) \cdot (1 - \log_6 6 - \log_6 2) = -\log_2 6 \cdot (-\log_6 2) =$$

$$= \log_2 6 \cdot \log_6 2 = \frac{\log_2 6}{\log_2 6} = 1.$$

Как решать логарифмические уравнения?

Разберем простую задачу из варианта ЕГЭ.

24.
$$\log_2 (15 + x) = \log_2 3$$

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.

Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!»

Логарифмы, конечно, не коньки, чтобы их отбрасывать, но суть действия отражена верно :-)

Получаем:

$$15 + x = 3;$$

$$x = 12.$$

Почему мы «отбрасываем логарифмы»? Связано это со свойством логарифмической функции: каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, значит, равны и сами числа. Подробно - на сайте www.EGE-Study.ru в моей статье «Логарифмическая функция».

Решая логарифмические уравнения, не забывайте про **область допустимых значений** логарифма. Помните, что выражение $\log_a b$ определено при b>0, a>0, $a\ne 1$. Найдя неизвестную величину, подставьте ее в уравнение. Если его левая или правая часть не имеют смысла – значит, найденное число не является решением уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

25.
$$\log_2(4-x) = 7$$

В левой части уравнения – логарифм, в правой – число 7. Примените основное логарифмическое тождество:

$$7 = \log_2 2^7.$$

Ответ: -124.

26.
$$\log_{\frac{1}{7}}(7-x) = -2$$

$$\log_{\frac{1}{7}} (7 - x) = \log_{\frac{1}{7}} \left(\frac{1}{7}\right)^{-2};$$

$$7 - x = \left(\frac{1}{7}\right)^{-2};$$

$$7 - x = 49;$$

$$x = -42.$$

$$27. \log_{5} (5 - x) = 2 \cdot \log_{5} 3$$

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5?

$$\log_5(5-x)=\log_5(3^2)$$
; $\log_5(5-x)=\log_59$; $5-x=9$; $x=-4$.
 $28.\,\log_5(7-x)=\log_5(3-x)+1$ Представьте число 1 в виде логарифма по основанию 5. $\log_5(7-x)=\log_5(3-x)+\log_55$; $\log_5(7-x)=\log_5(15-5x)$; $7-x=15-5x$; $4x=8$; $x=2$.

Мы видим, что переменная х находится в основании логарифма. Это неудобно. Даже в сложных уравнениях лучше работать с логарифмами по постоянному основанию. Значит, пользуемся формулой перехода к другому основанию: $\log_a b = \frac{1}{\log_b a}$

$$\frac{1}{\log_{49}(x-5)} = 2;$$

$$\log_{49}(x-5) = \frac{1}{2};$$

$$\log_{49}(x-5) = \log_{49}\left(49^{\frac{1}{2}}\right);$$

$$\log_{49}(x-5) = \log_{49}7;$$

$$x-5=7;$$

$$x=12.$$

Глава 9.

Вычисление площадей фигур. Формулы и приемы решения.

Основы тригонометрии. Синус, косинус и тангенс.

Задачи на внешний угол треугольника.

Важные соотношения в прямоугольном треугольнике.

Подобные треугольники.

Зачем нужен греческий алфавит.

Сейчас мы займемся геометрией и стереометрией. Ничего сложного – только определения синуса, косинуса и тангенса, формулы площадей и объемов, а также простые приемы, о которых мы расскажем.

Начнем с вычисления площадей. Прежде всего, учим формулы, без них никуда. Учите и применяйте! 4

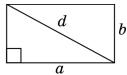
квадрат

Площадь: $S=a^2$

Периметр: P = 4a (Периметр – это сумма всех сто-

рон фигуры)

Длина диагонали: $d = a \cdot \sqrt{2}$

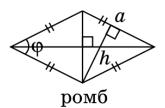


прямоугольник

$$S = a \cdot b$$
$$d = \sqrt{a^2 + b^2}$$

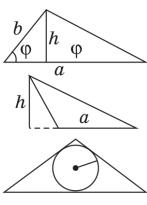
$$\phi$$
 a h

$$S = a \cdot h = a \cdot b \cdot \sin \varphi$$

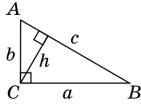


$$S=a\cdot h=a^2\cdot\sinarphi=rac{1}{2}\cdot d_1\cdot d_2$$
 (d_1 и d_2 – диагонали ромба)

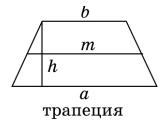
⁴Все таблицы с формулами можно бесплатно скачать с сайта www.EGE-Study.ru



треугольник



прямоугольный треугольник



$$S=rac{1}{2}\cdot a\cdot h=rac{1}{2}\cdot a\cdot b\cdot \sin arphi=p\cdot r$$
 (p – полупериметр, r – радиус вписанной окружноти)

$$S=rac{1}{2}\cdot a\cdot b=rac{1}{2}\cdot c\cdot h$$
 $c=\sqrt{a^2+b^2}$ (Теорема Пифагора) $\sin A=rac{a}{c}$ $\cos A=rac{b}{c}$ $\operatorname{tg} A=rac{a}{b}$

$$S = \frac{1}{2} (a+b) \cdot h$$
$$m = \frac{1}{2} (a+b)$$

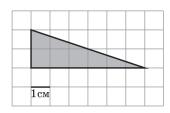
 $m = \frac{1}{2} \, (a + b)$ (m – средняя линия, отрезок, соединяющий середины боковых сторон)

$$S=\pi R^2$$

$$L=2\pi R=\pi D~(D$$
 – диаметр)

Вот самые простые задачи по геометрии из Банка заданий ФИПИ.

1. Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

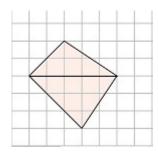


Площадь прямоугольного треугольника равна половине произведения катетов,

$$S = \frac{1}{2}ab = \frac{1}{2} \cdot 2 \cdot 6 = 6.$$

2. Часто в задачах из Банка заданий требуется найти площадь нестандартной фигуры, например, произвольного четырёхугольника.

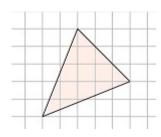
Применим простой приём. Разобьём эту фигуру на такие, площадь которых легко найти, и найдем её площадь – как сумму площадей этих фигур.



Разделим четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников:

$$S = 5 + 7, 5 = 12, 5.$$

В других случаях площадь фигуры можно представить как разность каких-либо площадей.



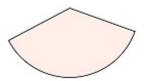
Не так-то просто посчитать, чему равно основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем:

67

$$S = 25 - 5 - 5 - 4, 5 = 10, 5.$$

Иногда в задании надо найти площадь не всей фигуры, а её части.

3. Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.



На этом рисунке мы видим сектор, то есть часть круга. Очевидно, что:

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

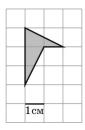
Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь всего круга равна $\pi R^2 = \pi$, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна $2\pi R = 2\pi$ (так как R=1), а длина дуги данного сектора равна 2, следовательно, длина дуги в π раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в π раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в π раз меньше, чем площадь всего круга.

Ответ: 1.

Еще несколько задач на вычисление площадей, для самостоятельного решения:

4. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рисунок.). Ответ дайте в квадратных сантиметрах



Разбейте фигуру на два равных по площади треугольника.

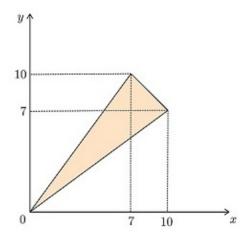
Ответ: 2.

6. Найдите площадь треугольника, вершины которого имеют координаты (2;2),(8;10),(8;8).

Числа в скобках – координаты вершин треугольника, причем первое – абсцисса, второе – ордината. Отметьте вершины треугольника на координатной плоскости и найдите его площадь по формуле $S=\frac{1}{2}ah$.

Ответ: 6.

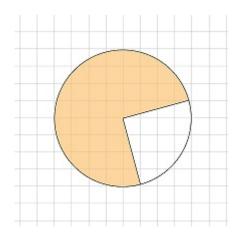
7. Найдите площадь треугольника, вершины которого имеют координаты (0;0), (10;7), (7;10).



Достройте фигуру до квадрата со стороной 10 и найдите площадь закрашенного треугольника как разность площадей нескольких фигур.

Ответ: 25,5.

8. Найдите (в см²) площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1 см на 1 см (см. рисунок). В ответе запишите $\frac{S}{\pi}$.



Закрашены $\frac{3}{4}$ круга. Значит,

$$S = \frac{3}{4}\pi \cdot 4^2 = 12\pi.$$

$$\frac{S}{\pi} = 12.$$

Следующая наша тема - основы тригонометрии.

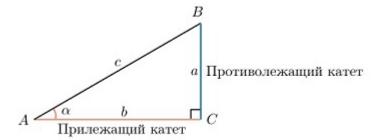
Напомним, что **прямым** называется угол, равный 90° , **острым** – угол меньший 90° , **тупым** – угол больший 90° . Применительно к такому углу «тупой» - не оскорбление, а математический термин :-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается C. Обратите внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается a.

В прямоугольном треугольнике сторона, лежащая напротив прямого угла, называется гипотенузой.

Стороны, лежащие напротив острых углов, называются катеты.

Катет, лежащий напротив угла A, называется **противолежащим**. Другой катет, который лежит на одной из сторон угла A, – **прилежащим**.

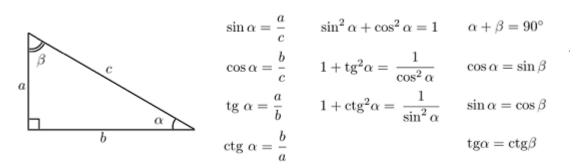


Синусом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему.

Котангенсом острого угла в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.

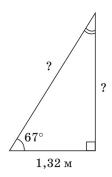


Это определения. А для чего все-таки нужен синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна 180°.

Знаем соотношение между **сторонами** прямоугольного треугольника. Это теорема Пифагора: ${\bf a^2}+{\bf b^2}={\bf c^2}$

То есть, зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Углы – отдельно, стороны – отдельно. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона?



Вот с этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс – их еще называют **тригонометрическими функциями угла** – дают соотношения между **сторонами** и **углами** треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем такую таблицу для углов от 0 до 90° .

φ	0°	30°	45°	60°	90°
$\sin \varphi$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \varphi$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} arphi$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-
$\operatorname{ctg} \varphi$	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

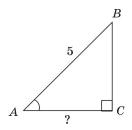
Разберем несколько задач по тригонометрии из Банка заданий ФИПИ:

9. В треугольнике ABC угол C равен 90° , $\sin \angle A = 0, 1$. Найдите $\cos \angle B$.

Задача решается за четыре секунды.

Поскольку $\angle A + \angle B = 90^{\circ}$, $\sin \angle A = \cos \angle B = 0, 1$.

10. В треугольнике ABC угол C равен 90° , AB=5, $\sin \angle A=\frac{7}{25}$. Найдите AC.



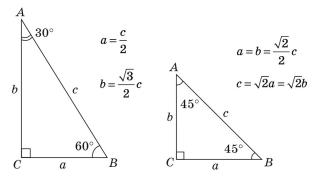
$$\sin A = \frac{a}{c} = \frac{BC}{AB} = \frac{7}{25}$$
. Отсюда $BC = \frac{7}{25} \cdot AB = \frac{7}{5}$.

Найдем АС по теореме Пифагора.

$$AC = \sqrt{AB^2 - BC^2} = \frac{24}{25} = 0,96$$

11. В треугольнике ABC угол C равен 90° , угол A равен 60° , BC=2 . Найдите AB.

Часто в задачах встречаются треугольники с углами 90° , 30° и 60° или с углами 90° , 45° и 45° . Основные соотношения для них лучше запомнить наизусть.

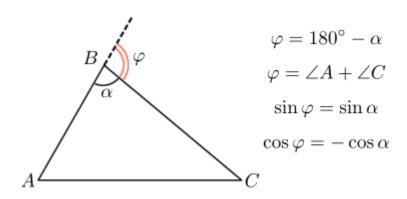


По условию, AB – гипотенуза, BC – катет, противолежащий углу A. $\sin A = \tfrac{a}{c} = \tfrac{BC}{AB} = \tfrac{\sqrt{3}}{2}, \text{ так как угол A равен } 60^\circ. \text{ Отсюда } AB = \tfrac{BC}{\sin A} = 4.$

В некоторых задачах требуется найти синус, косинус или тангенс внешнего угла треугольника. А что такое внешний угол треугольника?

На этом рисунке изображены смежные углы. Так называются углы, имеющие общую вершину и общую сторону и образующие в сумме развернутый угол, то есть 180° .

Продолжили одну из сторон треугольника. Внешний угол при вершине В – это угол, смежный с углом В. Если угол В острый, то смежный с ним угол – тупой, и наоборот.



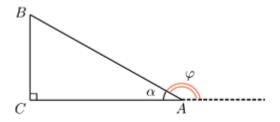
Обратите внимание, что

$$\sin (180^{\circ} - \alpha) = \sin \alpha$$
$$\cos (180^{\circ} - \alpha) = -\cos \alpha$$
$$tg (180^{\circ} - \alpha) = -tg \alpha$$

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.

72

12. В треугольнике ABC угол C равен 90° , $\cos \angle A = \frac{4}{\sqrt{17}}$. Найдите тангенс внешнего угла при вершине A.



Пусть φ – внешний угол при вершине A.

$$\cos \varphi = -\cos A = -rac{4}{\sqrt{17}}.$$
 Зная $\cos \varphi$, найдем $\operatorname{tg} \varphi$ по формуле

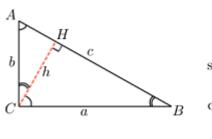
$$\frac{1}{\cos^2\varphi} = 1 + tg^2 \, \varphi$$

Получим: $\operatorname{tg} \varphi = \frac{1}{\sqrt{4}} = 0,25$

Часто для обозначения углов пользуются греческими буквами: α , β , φ и другими. Будет замечательно, если вы выучите их написание и название. Не называть же их всякий раз «эта штучка»! :-)

Специально для этого в конце книги приведен греческий алфавит.

Во многих задачах по геометрии рассматривается прямоугольный треугольник, в котором высота проведена из вершины прямого угла. Посмотрим, что при этом получается:



$$\angle BAC = \angle BCH$$

$$\angle ABC = \angle ACH$$

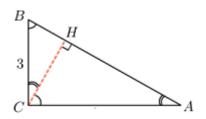
$$\sin A = \frac{a}{c} = \frac{h}{b} = \frac{BH}{a}$$

$$\cos A = \frac{b}{c} = \frac{h}{a} = \frac{AH}{b}$$

$$S_{ABC} = \frac{ab}{2} = \frac{ch}{2}$$

Обратите внимание на треугольники ABC, BCH и ACH. Мы видим, что угол CAB равен углу HCB, а угол ABC равен углу ACH. Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника ACH (и треугольника BCH). Треугольники ABC, ACH и BCH называются подобными.

13. В треугольнике ABC угол C равен 90° , CH — высота, BC =3, $\cos \angle A = \frac{\sqrt{35}}{6}$. Найдите AH.



Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем $\sin A$:

$$\sin^2 \angle A + \cos^2 \angle A = 1$$
$$\sin^2 \angle A + \frac{35}{36} = 1$$
$$\sin^2 \angle A = \frac{1}{36}$$
$$\sin \angle A = \frac{1}{6}.$$

Тогда $AB=BC:\sin \angle A=3:\frac{1}{6}=3\cdot 6=18.$

Рассмотрим прямоугольный треугольник BCH, $\angle H = 90^\circ$. Поскольку $\angle HCB = \angle A$, $\sin \angle HCB = HB: BC$.

Отсюда $HB = BC \cdot \sin \angle HCB = 3 \cdot \frac{1}{6} = 2.$

$$AH = AB - HB = 18 - 2 = 16.$$

Ответ: 16.

Глава 10.

Геометрия в картинках.

Треугольники: основные формулы, факты и соотношения. Высоты, медианы и биссектрисы.

Четырехугольники: основные формулы, факты и соотношения.

Окружность и круг.

О чем царь спрашивал математика.

Даже в вариантах ЕГЭ базового уровня есть задачи по геометрии. При этом, у выпускника школы знания по геометрии часто близки к нулю. Геометрии в школе нет.

Да, в школьном расписании есть такой предмет, но экзамен по нему не обязателен, поэтому уроки геометрии заменяются подготовкой к Γ ИА по алгебре, мытьем окон, классным часом, и в результате абитуриент не знает, как вычислить площадь квадрата 5 .

Для решения планиметрических задач части В нужно совсем немного. Вам не понадобятся справочники или толстенные сборники шпаргалок. Все основные формулы, факты и соотношения в этой книге собраны в краткий курс «Геометрия в картинках». И тут же показано их практическое применение, то есть решение типовых задач из Банка заданий. Некоторые из них тривиальны – бери числа, подставляй в формулу. Но более интересны те, в которых используются те или иные важные приемы или методы.

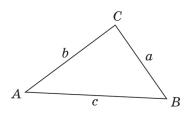
На одной «картинке» строится целая серия задач, встречающихся в вариантах ЕГЭ. Часто нужно посмотреть на чертеж не привычным взглядом, а как-то иначе, по-другому, чтобы вдруг увидеть решение, почувствовать, угадать его, а затем доказать свое предположение и найти ответ. Этим мы и займемся.

Старайтесь решать задачи самостоятельно, а затем уже заглядывать в решение, приведенное в конце главы. Договорились? :-)

Напомню еще раз, что в бланке ответов ЕГЭ нужно писать только число!

Ни сантиметры, ни градусы, ни какие-либо еще величины писать нельзя, иначе вам засчитают ошибку. А нам ошибки не нужны!

Начнем с треугольников и основных фактов, с ними связанных.



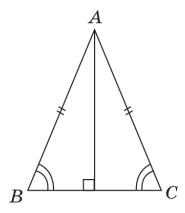
Сумма углов любого треугольника равна 180°.

В треугольнике напротив большей стороны лежит больший угол. Напротив меньшей стороны – меньший угол.

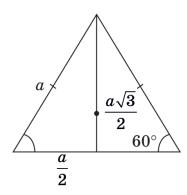
Сумма двух сторон треугольника всегда больше третьей стороны:

a+c>b (неравенство треугольника)

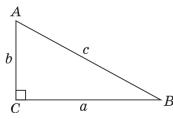
 $^{^{5}}$ Я не шучу. На собеседовании я задаю ученику два вопроса «на засыпку» – прошу посчитать площадь квадрата и нарисовать правильный шестиугольник. Вместо него мне рисуют нечто кривое и перекошенное, как будто никогда не видели ни гайку, ни снежинку! :-)



Треугольник, у которого две стороны равны, называется равнобедренным. Эти стороны называют боковыми. Напротив равных сторон лежат равные углы. Высота, проведенная к третьей стороне (основанию) равнобедренного треугольника, является также медианой и биссектрисой.



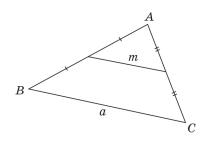
Равносторонним (или правильным) называется треугольник, у которого все стороны равны. Все его углы равны 60° .



В прямоугольном треугольнике больший угол равен 90° . Сторона, лежащая напротив него, называется гипотенуза, две другие – катеты.

Теорема Пифагора:

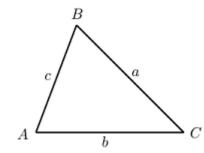
$$c^2 = a^2 + b^2$$



Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. Средняя линия параллельна третьей стороне треугольника и равна ее половине:

$$m = \frac{a}{2}$$
.

Для любого треугольника выполняются теорема синусов и теорема косинусов.



Теорема синусов:

$$\frac{a}{\sin \angle A} = \frac{b}{\sin \angle B} = \frac{c}{\sin \angle C} = 2R$$

R - радиус описанной окружности

Теорема косинусов: $c^2 = a^2 + b^2 - 2a \cdot b \cdot \cos C$

Все формулы площади треугольника:

$$S=rac{1}{2}a\cdot h=rac{1}{2}a\cdot b\cdot \sin C=p\cdot r=rac{abc}{4R}=\sqrt{p\cdot (p-a)\cdot (p-b)\cdot (p-c)}$$
 (h – высота, R – радиус описанной окружности, r – радиус вписанной окружности, p

- полупериметр.)

1. Один из внешних углов треугольника равен 85°. Углы, не смежные с данным внешним углом, относятся как 2:3. Найдите наибольший из них. Ответ дайте в градусах.

Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Следовательно, сумма двух других углов треугольника равна 85°, а их отношение равно 2:3. Пусть эти углы равны 2x и 3x. Получим уравнение

$$2x + 3x = 85$$
 и найдем $x = 17$.

Тогда
$$3x = 51$$
.

Ответ: 51.

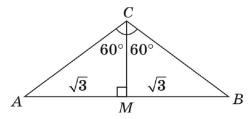
2. Один из углов равнобедренного треугольника равен 98°. Найдите один из других его углов. Ответ дайте в градусах.

Как вы думаете, может ли равнобедренный треугольник иметь два угла по 98°?

Нет, конечно! Ведь сумма углов треугольника равна 180°. Значит, один из углов треугольника равен 98° , а два других равны $\frac{180-98}{2}=41^{\circ}$.

Ответ: 41.

3. В треугольнике ABC AC = BC, угол C равен 120° , $AB = 2\sqrt{3}$. Найдите AC.



На рисунке уже дана подсказка. Высота СМ делит равнобедренный треугольник АВС на два прямоугольных. Одновременно СМ является медианой и биссектрисой треугольника АВС.

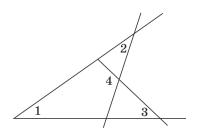
Рассмотрим треугольник АСМ.

Угол AMC прямой,
$$AM=\frac{1}{2}AB=\sqrt{3}$$
 , $\angle ACM=60^{\circ}$.

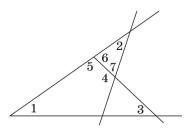
Из треугольника АМС найдем
$$AC = AM : \sin 60^\circ = \sqrt{3} : \frac{\sqrt{3}}{2} = \frac{\sqrt{3} \cdot 2}{\sqrt{3}} = 2.$$

Ответ: 2.

4. На рисунке угол 1 равен 46° , угол 2 равен 30° , угол 3 равен 44° . Найдите угол 4. Ответ дайте в градусах.



Давайте отметим на чертеже еще несколько углов. Они нам понадобятся



Сначала найдем угол 5. Он равен $180^{\circ} - \angle 1 - \angle 3 = 90^{\circ}$

Тогда
$$\angle 6 = 90^{\circ}$$

$$\angle 7 = 180^{\circ} - \angle 2 - \angle 6 = 60^{\circ},$$

Угол 4, смежный с углом 7, равен 120° .

Ответ: 120.

Заметим, что такой способ решения – не единственный. Просто находите и отмечайте на чертеже все углы, которые можно найти, - и, в конце концов, получите ответ.

5. Углы треугольника относятся как 2:3:4. Найдите меньший из них. Ответ дайте в градусах.

Пусть углы треугольника равны 2x, 3x и 4x. Тогда

$$2x + 3x + 4x = 180^{\circ}$$

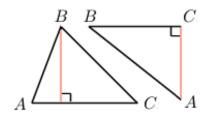
$$9x = 180^{\circ}$$

$$x = 20^{\circ}$$

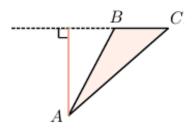
Tогда $2x = 40^{\circ}$.

Ответ: 40.

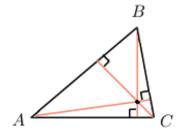
Высоты, медианы и биссектрисы треугольника.



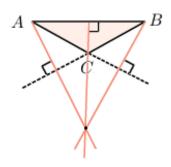
Высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на противоположную сторону.



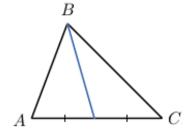
В тупоугольном треугольнике высота опускается на продолжение стороны.



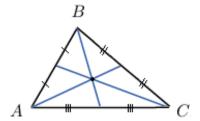
Три высоты треугольника всегда пересекаются в одной точке.



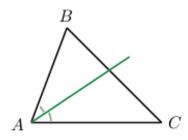
В случае тупого угла пересекаются продолжения высот.



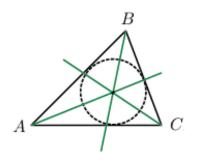
Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.



Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении 2:1, считая от вершины.

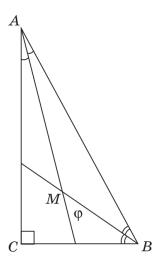


Биссектриса треугольника делит угол треугольника пополам.



Три биссектрисы пересекаются в одной точке, которая является центром окружности, вписанной в треугольник.

6. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.



Пусть биссектрисы треугольника ABC (в котором угол C равен 90°) пересекаются в точке M.

Рассмотрим треугольник АВМ.

$$\angle MAB = \frac{1}{2} \angle BAC,$$

$$\angle ABM = \angle ABC$$
, тогда $\angle AMB = 180^\circ - \angle MAB - \angle ABM = 180^\circ - \frac{1}{2}\left(\angle ABC + \angle BAC\right)$.

Острый угол между биссектрисами на рисунке обозначен φ .

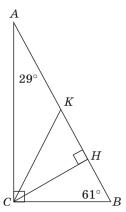
Угол φ смежный с углом AMB, следовательно, $\varphi=\frac{1}{2}\left(\angle ABC+\angle BAC\right)$.

Поскольку треугольник ABC – прямоугольный, то ABC + BAC = 90° .

тогда
$$\varphi = \frac{1}{2} \left(\angle ABC + \angle BAC \right) = 90^\circ : 2 = 45^\circ.$$

Ответ: 45.

7. Острые углы прямоугольного треугольника равны 29° и 61°. Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.



Пусть CH – высота, проведенная из вершины прямого угла C, CK – биссектриса угла C.

Тогда
$$\angle ACH = \angle ABC = 61^{\circ}$$
,

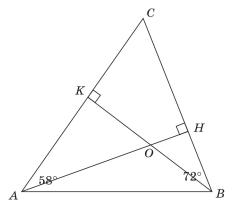
$$\angle ACK = 90^{\circ}: 2 = 45^{\circ}.$$

Угол между высотой и биссектрисой – это угол KCH.

$$\angle KCH = \angle ACH - \angle ACK = 61^{\circ} - 45^{\circ} = 16^{\circ}$$

Ответ: 16.

8. Два угла треугольника равны 58° и 72° . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.



Из треугольника ABH (угол H – прямой) найдем угол BAH. Он равен 18° .

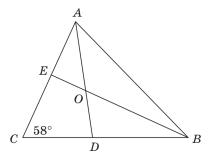
Из треугольника ABK (угол K – прямой) найдем угол ABK. Он равен 32° .

В треугольнике AOB известны два угла. Найдем третий, то есть угол AOB, который и является тупым углом между высотами треугольника ABC:

$$\angle = 180^{\circ} - 18^{\circ} - 32^{\circ} = 130^{\circ}.$$

Ответ: 130.

9. В треугольнике ABC угол C равен 58° , AD и BE — биссектрисы, пересекающиеся в точке O. Найдите угол AOB. Ответ дайте в градусах.



Пусть в треугольнике АВС угол ВАС равен А, угол АВС равен В.

Рассмотрим треугольник АОВ.

$$\angle OAB = \angle A$$

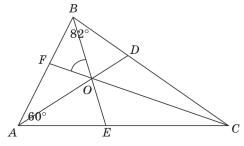
$$\angle ABO = \angle B$$
, тогда $\angle AOB = 180^{\circ} - \frac{1}{2} \left(\angle A + \angle B \right)$.

Из треугольника ABC получим, что $\angle A + \angle B = 180^\circ - 58^\circ = 122^\circ.$

Тогда
$$\angle AOB = 180^{\circ} - \frac{1}{2} (\angle A + \angle B) = 180^{\circ} \cdot 61^{\circ} = 119^{\circ}.$$

Ответ: 119.

10. В треугольнике ABC угол A равен 60° , угол B равен 82° . AD, BE и CF — биссектрисы, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.



Найдем угол ACB. Он равен 38° .

Тогда
$$\angle ACF = \frac{1}{2} \angle ACB = 19^{\circ}$$
.

Из треугольника ACF найдем угол AFC. Он равен 101° .

Рассмотрим треугольник АОГ.

$$\angle AFO=101^\circ$$
, $\angle FAO=\frac{1}{2}\angle BAC=30^\circ$. Значит, $\angle AOF=49^\circ$.

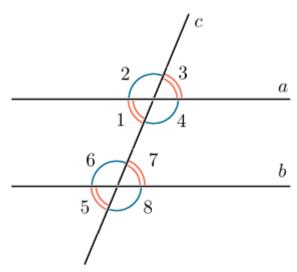
Ответ: 49.

Четырехугольники

Следующая тема – четырехугольники. Прежде чем к ней перейти, дадим несколько важных определений.

Пусть прямые a и b параллельны, прямая c пересекает их и называется секущей.

При этом образуется 8 углов. Они показаны на рисунке.



Углы 1 и 3 (а также 2 и 4, 5 и 7, 6 и 8) называются вертикальными.

Вертикальные углы равны, то есть

 $\angle 1 = \angle 3$,

 $\angle 2 = \angle 4$.

Углы 2 и 3 – смежные. Их сумма равна 180° .

Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными.

Соответственные углы равны, то есть

 $\angle 2 = \angle 6$,

 $\angle 3 = \angle 7$.

Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют **накрест-лежащими**.

Накрест-лежащие углы равны, то есть

 $\angle 3 = \angle 5$,

 $\angle 1 = \angle 7$,

 $\angle 2 = \angle 8$,

 $\angle 4 = \angle 6$.

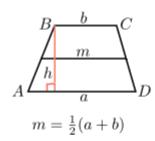
Наконец, углы 1 и 6 (а также 4 и 7) называют **односторонними**. Можно сказать, что односторонние углы лежат «по одну сторону от всей конструкции».

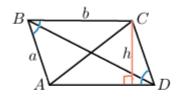
Сумма односторонних углов равна 180° , то есть

 $\angle 1 + \angle 6 = 180^{\circ},$

 $4 + 47 = 180^{\circ}$.

Эти факты пригодятся нам, когда мы займемся задачами о четырехугольниках. Конечно, там их еще надо разглядеть. Зато, увидев на чертеже односторонние или накрестлежащие углы, вы сделаете один из шагов, из которых и состоит решение.





$$AB = CD, BC = DA$$

 $\angle A = \angle C$
 $\angle A + \angle D = 180^{\circ}$

Эти стороны называются основаниями трапеции, две другие - боковые стороны.

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям трапеции и равна их полусумме.

Площадь трапеции: $S=rac{1}{2}(a+b)h$

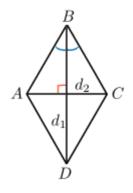
Параллелограмм - четырёхугольник, имеющий две пары параллельных сторон.

Противоположные углы параллелограмма равны.

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180° .

Диагонали параллелограмма в точке пересечения делятся пополам.

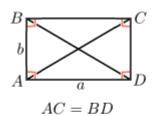
Площадь параллелограмма: $S = ab \sin \angle A = ah$



Ромб - это параллелограмм, у которого все стороны равны.

Диагонали ромба перпендикулярны и являются биссектрисами углов ромба.

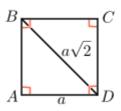
Площадь ромба: $S = \frac{1}{2} d_1 d_2$



Прямоугольник - это параллелограмм, у которого все углы прямые.

Диагонали прямоугольника равны.

Площадь прямоугольника: S=ab



Квадрат - это прямоугольник, у которого все стороны равны.

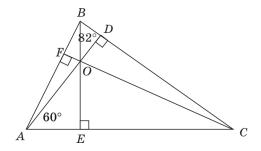
Другими словами, это ромб с прямыми углами.

Площадь квадрата: $S = a^2$

11. Найдите сторону квадрата, диагональ которого равна $\sqrt{8}$. Пусть a – сторона квадрата. Тогда диагональ равна $a\sqrt{2}$, и значит, a=2.

Ответ: 2.

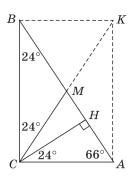
12. В треугольнике ABC угол A равен 60° , угол B равен 82° . AD, BE и CF — высоты, пересекающиеся в точке O. Найдите угол AOF. Ответ дайте в градусах.



Рассмотрим четырехугольник BFOD. Углы F и D в нем – прямые, угол B равен 82° . Сумма углов любого четырехугольника равна 360° , следовательно, угол FOD равен 98° , а угол AOF – смежный с ним – равен 82° .

Ответ: 82.

13. Острые углы прямоугольного треугольника равны 24° и 66°. Найдите угол между высотой и медианой, проведенными из вершины прямого угла. Ответ дайте в градусах.



По свойству высоты, проведенной из вершины прямого угла,

$$\angle ACH = \angle ABC = 24^{\circ}$$
.

Рассмотрим треугольник BMC. Как вы думаете, что можно сказать об отрезках BM и CM?

Внимание! Сейчас мы сформулируем и докажем теорему:

В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы.

В самом деле, достроим треугольник АВС до прямоугольника АСВК.

Диагонали прямоугольника равны и делятся пополам в точке пересечения. Значит, BM = CM.

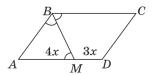
То, что мы только что сделали - пример математического доказательства.

Итак, BM = CM, значит, треугольник BMC равнобедренный, и угол BCM равен 24° .

Тогда угол МСН (между медианой и высотой треугольника ABC) равен $180^{\circ}-24^{\circ}-24^{\circ}=132^{\circ}.$

Ответ: 132.

14. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.



Пусть ВМ – биссектриса тупого угла В. По условию, отрезки MD и AM равны 3x и 4x соответственно.

Рассмотрим углы CBM и BMA. Поскольку AD и BC параллельны, BM – секущая, углы CBM и BMA являются накрест-лежащими. Мы знаем, что накрест-лежащие углы равны. Значит, треугольник ABM – равнобедренный, следовательно, AB = AM = 4x. Периметр параллелограмма – это сумма всех его сторон, то есть

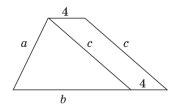
$$7x + 7x + 4x + 4x = 88.$$

Отсюда x=4,

7x = 28.

Ответ: 28.

15. Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 4, отсекает треугольник, периметр которого равен 15. Найдите периметр трапеции.



Это легкая задача – все сразу видно на чертеже.

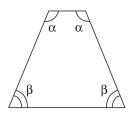
Пусть стороны треугольника, о котором говорится в условии, равны a,b и c. Тогда периметр трапеции равен a+b+4+c+4=a+b+c+8=15+8=23.

Мы воспользовались тем, что противоположные стороны параллелограмма равны.

Ответ: 23.

16. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50° ? Ответ дайте в градусах.

Напомним, что **равнобедренной** (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.



Давайте посмотрим на чертеж. По условию, $\alpha-\beta=50^\circ$, то есть $\alpha=\beta+50^\circ$. Углы α и β – односторонние при параллельных прямых и секущей, следовательно, $\alpha+\beta=180^\circ$.

Итак, $2\beta+50^\circ=180^\circ$ $\beta=65^\circ$, тогда $\alpha=115^\circ$.

Ответ: 115.

17. Найдите высоту ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60° .

Один из подходов к решению задач по геометрии – **метод площадей**. Он состоит в том, что площадь фигуры выражается двумя разными способами, а затем из полученного уравнения находится неизвестная величина.

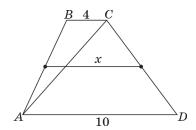
Пусть a – сторона ромба. Тогда

$$S = a^2 \sin 60^\circ = ah,$$

$$3 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}h.$$

Отсюда
$$h = \frac{3}{2} = 1, 5.$$

18. Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей.

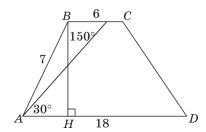


Скажите, что вы видите на чертеже? Можно сказать, что изображена трапеция ABCD, и в ней проведена средняя линия. А можно увидеть и другое – два треугольника, ABC и ACD, в которых проведены средние линии. Продолжайте! Дальше все просто.

Средняя линия треугольника равна половине основания, значит, $x = \frac{1}{2}AD = 5$.

Ответ: 5

19. Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150. Найдите площадь трапеции.



По формуле площади трапеции, $S = \frac{a+b}{2}h$. Основания есть, осталось найти высоту. Углы A и B – односторонние при параллельных прямых и секущей, следовательно,

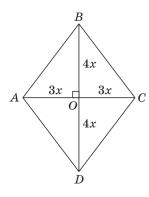
 $\angle A=180^{\circ}-\angle B=30^{\circ}.$ Проведем высоту BH. Найдем длину отрезка BH из прямо-угольного треугольника ABH.

$$BH = AB \cdot \sin 30^{\circ} = 7 \cdot \frac{1}{2} = \frac{7}{2}.$$

Тогда площадь трапеции равна $\frac{6+18}{2} \cdot \frac{7}{2} = 42$.

Ответ: 42.

20. Диагонали ромба относятся как 3:4. Периметр ромба равен 200. Найдите высоту ромба.



Пусть диагонали ромба равны 6x и 8x.

Рассмотрим прямоугольный треугольник АОВ.

По теореме Пифагора $AB^2 = AO^2 + OB^2$

 $AB^2 = 9x^2 + 16x^2$,

 $AB^2 = 25x^2,$

Отсюда AB = 5x.

Поскольку периметр равен 200,

 $5x \cdot 4 = 200$

x = 10, AB = 50, а диагонали ромба равны 60 и 80.

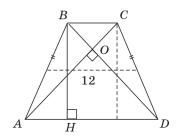
Нам надо найти высоту ромба.

Давайте применим метод площадей. С одной стороны, S=ah. С другой стороны, площадь ромба складывается из площадей двух равных треугольников ABC и ADC, то есть равна $60\cdot 40=2400$.

Отсюда h = S : a = 2400 : 50 = 48.

Ответ: 48.

21. В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.



На первый взгляд кажется, что данных не хватает. Основания не даны, только высота. Но на самом деле задача составлена корректно. Ведь мы знаем, что трапеция равнобедренная и ее диагонали перпендикулярны. Отметьте на чертеже все углы, какие можно найти. Рассмотрите треугольники АОD и ВНD.

Треугольник AOD – прямоугольный и равнобедренный, значит, $\angle OAD = \angle ODA = 45^\circ$. Значит, треугольник BHD – тоже прямоугольный и равнобедренный.

Отсюда BH = HD = 12.

Выразим отрезок HD через основания трапеции AD и BC.

 $HD = AD - AH = AD - \frac{AD - BC}{2} = \frac{AD + BC}{2}$.

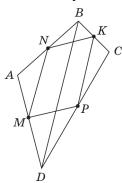
Замечательно! Оказывается, отрезок AD равен средней линии трапеции!

Ответ: 12.

22. Диагонали четырехугольника равны 4 и 5. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.

Обратите внимание, что в условии не сказано, какой это четырехугольник. Мы не будем рисовать его красивее, чем он есть. Пусть это будет произвольный четырехугольник – все стороны разные, углы тоже все разные.

Пусть AC = 4, BD = 5. Отметим середины сторон, соединим их по порядку и посмотрим, что получилось.



Очень интересно. Похоже, четырехугольник MNKP – параллелограмм. Докажите это. Постарайтесь найти на чертеже треугольники, в которых проведены средние линии. Воспользуйтесь свойством противоположных сторон параллелограмма.

Рассмотрим треугольник ABD. В нем NM – средняя линия. Она параллельна BD и равна половине BD, то есть 2,5. Тогда KP – средняя линия треугольника BDC. Она тоже параллельна BD и равна половине BD, то есть 2,5.

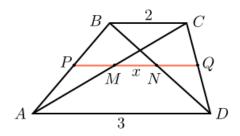
Аналогично, NK и MP параллельны AC,

$$NK = MP = \frac{1}{2}AC = 2.$$

Противоположные стороны четырехугольника MNKP попарно параллельны. Значит, MNKP – параллелограмм. Его периметр равен сумме всех сторон, то есть 9.

Ответ: 9.

23. Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.



Проведем PQ – среднюю линию трапеции, PQ=2,5. Легко доказать, что отрезок MN, соединяющий середины диагоналей трапеции, лежит на средней линии. Дальше все просто. Сумеете продолжить решение?

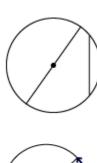
PM – средняя линия треугольника ABC, значит, PM=1.

NQ – средняя линия треугольника BCD, значит, NQ=1.

Тогда
$$MN = PQ - PM - NQ = 2, 5 - 1 - 1 = 0, 5$$

Ответ: 0,5.

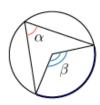
Следующая тема - окружность, круг и все связанные с ними задачи.



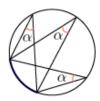
Отрезок, соединяющий две точки на окружности, называется хорда.

Самая большая хорда проходит через центр окружности и называется диаметр.

Угол, вершина которого лежит в центре окружности, называется центральным. Величина центрального угла равна угловой величине дуги, на которую он опирается. Угол β тоже можно назвать центральным. Только он опирается на дугу, которая больше 180° .

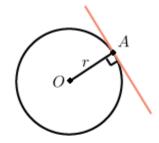


Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным. Величина вписанного угла равна половине центрального угла, опирающегося на ту же дугу.

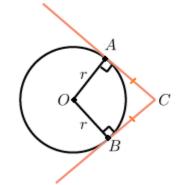


Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Вписанный угол, опирающийся на диаметр, - прямой.

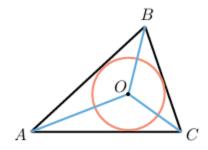


Прямая, имеющая с окружностью только одну общую точку, называется касательной.

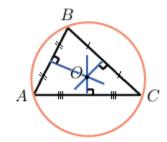


Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

Отрезки касательных, проведённых из одной точки, равны.

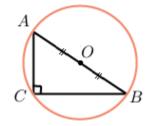


В любой треугольник можно вписать окружность. Её центром является точка пересечения биссектрис треугольника.

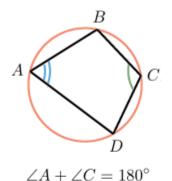


Вокруг любого треугольника можно описать окружность. Её центр - точка пересечения серединных перпендикуляров к сторонам треугольника.

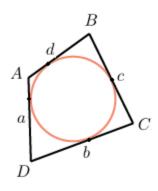
Иногда говорят ещё, что окружность описана около треугольника. Это означает то же самое - все вершины треугольника лежат на окружности.



У прямоугольного треугольника центр описанной окружности лежит на середине гипотенузы.



Четырёхугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны 180° .



a + c = b + d

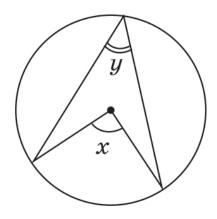
Четырёхугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

24. Чему равен вписанный угол, опирающийся на диаметр окружности? Ответ дайте в градусах.

Вписанный угол, опирающийся на диаметр, - прямой.

Ответ: 90.

25. Центральный угол на 36° больше острого вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол. Ответ дайте в градусах.



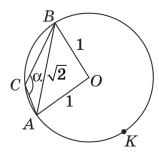
Пусть центральный угол равен x, а вписанный угол, опирающийся на ту же дугу, равен y. Мы знаем, что x=2y.

Отсюда 2y = 36 + y,

y = 36.

Ответ: 36.

26. Радиус окружности равен 1. Найдите величину тупого вписанного угла, опирающегося на хорду, равную $\sqrt{2}$. Ответ дайте в градусах.



Пусть хорда AB равна $\sqrt{2}$. Тупой вписанный угол, опирающийся на эту хорду, обозначим α .

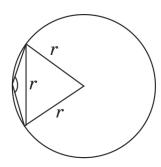
В треугольнике AOB стороны AO и OB равны 1, сторона AB равна $\sqrt{2}$. Нам уже встречались такие треугольники. Очевидно, что треугольник AOB – прямоугольный и равнобедренный, то есть угол AOB равен 90° .

Тогда дуга ACB равна 90° , а дуга AKB равна $360^{\circ} - 90^{\circ} = 270^{\circ}$.

Вписанный угол α опирается на дугу AKB и равен половине угловой величины этой дуги, то есть 135° .

Ответ: 135.

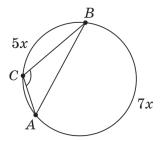
27. Чему равен тупой вписанный угол, опирающийся на хорду, равную радиусу окружности? Ответ дайте в градусах.



Эта задача похожа на предыдущую. Вы без труда решите ее сами.

Ответ: 150.

28. Хорда AB делит окружность на две части, градусные величины которых относятся как 5:7. Под каким углом видна эта хорда из точки C, принадлежащей меньшей дуге окружности? Ответ дайте в градусах.



Главное в этой задаче – правильный чертеж и понимание условия. Как вы понимаете вопрос: «Под каким углом хорда видна из точки С?»

Представьте, что вы сидите в точке C и вам необходимо видеть вс \ddot{e} , что происходит на хорде AB. Так, как будто хорда AB – это экран в кинотеатре :-)

Очевидно, что нужно найти угол АСВ.

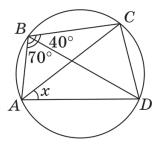
Сумма двух дуг, на которые хорда AB делит окружность, равна 360° , то есть

 $5x + 7x = 360^{\circ}$ Отсюда $x = 30^{\circ}$, и тогда вписанный угол ACB опирается на дугу, равную 210° .

Величина вписанного угла равна половине угловой величины дуги, на которую он опирается, значит, угол ACB равен 105° .

Ответ: 105.

29. Четырехугольник ABCD вписан в окружность. Угол ABC равен 110° , угол ABD равен 70° . Найдите угол CAD. Ответ дайте в градусах.

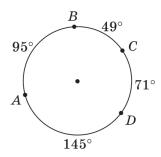


Вписанные углы, опирающиеся на одну и ту же дугу, равны.

Угол CAD опирается на ту же дугу, что и угол CBD, который равен $110^{\circ}-70^{\circ}=40^{\circ}$.

Ответ: 40.

30. Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно 95° , 49° , 71° , 145° . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

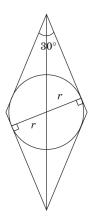


По условию, четырехугольник ABCD вписан в окружность.

Угол B опирается на дугу ADC, равную $145^{\circ} + 71^{\circ} = 216^{\circ}$ и равен половине этой дуги, то есть 108° .

Ответ: 108.

31. Острый угол ромба равен 30°. Радиус вписанной в этот ромб окружности равен 2. Найдите сторону ромба.



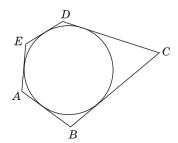
Окружность вписана в ромб. Это значит, что она касается всех сторон ромба. Касательная перпендикулярна радиусу, проведенному в точку касания, и значит, диаметр окружности равен высоте ромба.

Применим метод площадей. О нем рассказано в задаче 17. Выразите площадь ромба двумя способами и найдите сторону ромба.

Пусть a - сторона ромба. Тогда $S=a^2\cdot\sin 30^\circ=ah$. $\frac{1}{2}a^2=a\cdot 4$ Отсюда a=8.

Ответ: 8.

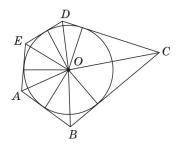
32. Около окружности описан многоугольник, площадь которого равна 5. Его периметр равен 10. Найдите радиус этой окружности.



Обратите внимание, что в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.

Окружность касается всех сторон многоугольника. Давайте отметим центр окружности – точку О – и проведем перпендикулярные сторонам радиусы в точки касания.

Давайте также соединим точку O с вершинами A, B, C, D, E. Мы получили треугольники AOB, BOC, COD, DOE и EOA.



Очевидно, что площадь многоугольника $S = S_{AOB} + S_{BOC} + S_{COD} + S_{DOE} + S_{EOA}$. Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?

Высоты всех треугольников одинаковы и равны радиусу окружности, то есть r.

По формуле площади треугольника,

$$S_{AOB} = \frac{1}{2}AB \cdot r$$

$$S_{BOC} = \frac{1}{2}BC \cdot r$$

$$S_{COD} = \frac{1}{2}CD \cdot r$$

$$S_{DOE} = \frac{1}{2}DE \cdot r$$

$$S_{EOA} = \frac{1}{2}EA \cdot r$$

Тогда $S=\frac{1}{2}\left(AB+BC+CD+DE+EA\right)\cdot r=\frac{1}{2}P\cdot r$, где P – периметр, то есть сумма всех сторон многоугольника.

Мы получили, что

$$\frac{1}{2} \cdot 10 \cdot r = 5.$$

Ответ: 1.

Конечно, наша «геометрия в картинках» не заменит глубокого изучения предмета. Это лишь основы, необходимый минимум, позволяющий решить на $E\Gamma \Im$ геометрические задачи из части B.

А если вам нужна более серьезная подготовка? С чего начать?

Для того чтобы помочь вам, я записала два видеокурса по геометрии. Первый - курс «Геометрия на ЕГЭ по математике» из комплекта «Получи пятерку». В нем намного больше, чем в этой книге, решений задач, приемов, маленьких секретов, помогающих решить любую задачу по геометрии.

Второй – курс «С4. Геометрия на ЕГЭ по математике». Этот видеокурс я начинаю с темы «Математическое доказательство». Начинаю с простых задач на доказательство, показываю разные приемы решения, постепенно перехожу к сложным задачам С4 (в новой нумерации – \mathbb{N} 18).

Я приглашаю вас пройти вместе со мной этот увлекательный путь. Вы увидите, как проста и красива геометрия Евклида; как из самых очевидных утверждений – их называют аксиомы – вырастает стройная и взаимосвязанная система. А главное – поймете, что такое математическое доказательство.

А то был у меня случай на занятиях. Прошу ученика доказать, что сумма углов треугольника равна 180 градусов, а он отвечает: «Точняк, сто восемьдесят. Мамой клянусь!» :-)

Каждая, даже простая геометрическая задача на доказательство учит вас отстаивать свое мнение, основанное не на догадках и эмоциях, а на знаниях. Вы начнете мыслить самостоятельно и получать удовольствие от самого процесса поиска истины.

Только – и это очень важно! – не заглядывайте раньше времени в ответ, не ищите готовых решений. Евклид – древнегреческий математик – сказал об этом задолго до нашего рождения.

По легенде, Евклид обучал геометрии царя Птолемея, и царь пожелал узнать, нет ли в этой науке более простого пути. «В геометрии нет царских дорог», – ответил Евклид.

Глава 11.

Что такое объем и площадь.

Вершины, ребра, грани.

Многогранники: куб, параллелепипед, пирамида, призма.

Тела вращения: цилиндр, конус, шар.

Стереометрия: просто применяем формулы.

Наша следующая тема - стереометрия.

Часто в задачах по стереометрии требуется посчитать объем тела или площадь его поверхности. Или каким-то образом использовать эти данные. Поэтому заглянем в толковый словарь русского языка и уточним понятия.

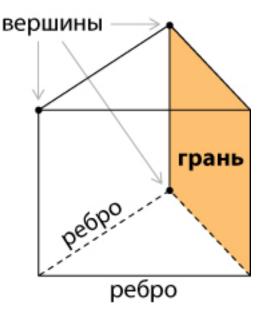
Объем – величина чего-либо в длину, ширину и высоту, измеряемая в кубических единицах.

Другими словами, чем больше объем, тем больше места тело занимает в трехмерном пространстве.

Площадь – величина чего-нибудь в длину и ширину, измеряемая в квадратных единицах. Представьте себе, что вам нужно оклеить всю поверхность объемного тела. Сколько квадратных сантиметров (или метров) вы бы обклеили? Это и есть площадь поверхности.

Объемные тела – это **многогранники** (куб, параллелепипед, призма, пирамида) и тела **вращения** (цилиндр, конус, шар).

Если в задаче по стереометрии речь идет о многограннике, вам встретятся термины «вершины» «грани» и «ребра». Вот они, на картинке.



Чтобы найти площадь поверхности многогранника, сложите площади всех его граней.

Вам могут также встретиться понятия «прямая призма, правильная пирамида».

Прямой называется призма, боковые ребра которой перпендикулярны основанию.

Если призма – прямая и в ее основании лежит правильный многоугольник, призма будет называться правильной.

А правильная пирамида – такая, в основании которой лежит правильный многоугольник, а вершина проецируется в центр основания.

Для решения задач по стереометрии вам понадобятся формулы (они в таблицах), логика и сообразительность.

Начнем с формул объема и площади поверхности.

МНОГОГРАННИКИ

объем	площадь поверхности	еще
V=a³ а - ребро куба	S=6a ²	d=a√3 длина диагонали
V=Sосн•h Sосн - площадь основания h - высота		
V=a·b·c прямоугольный параллелепипед	S=2ab+2bc+2ac	d=√a²+b²+c² длина диагонали
V=Sосн·h	S=2Sосн+Sбок	
$V=\frac{1}{3}$ Sосн \cdot h	S=S _{осн} +S _{бок}	

ТЕЛА ВРАЩЕНИЯ

	объем	площадь поверхности	еще
h цилиндр	V=πR ² ·h R - радиус основания h - высота	S=2S _{осн} + S _{бок} = =2πR ² +2πRh	
конус	$V=\frac{1}{3}\pi R^2 \cdot h$	S=S _{осн} + S _{бок} = =πR ² +πRL L - образующая	$L=\sqrt{R^2+h^2}$
шар	$V=\frac{4}{3}\pi R^3$	$S=4\pi R^2$	

Перейдем сразу к практике, то есть к экзаменационным задачам.

1. Во многих из них надо посчитать объем или площадь поверхности многогранника, из которого какая-либо часть вырезана.



Что тут нарисовано? Очевидно, это большой параллелепипед, из которого вырезан «кирпичик», так что получилась «полочка». Если вы увидели на рисунке что-то другое – обратите внимание на сплошные и штриховые линии. Сплошные линии – видимы. Штриховыми линиями показываются те ребра, которые мы не видим, - они находятся сзади, то есть закрыты другими гранями.

Объем найти просто. Из объема большого «кирпича», то есть параллелепипеда, вычитаем объем маленького «кирпича». Получаем: 75 - 4 = 71.

А как быть с площадью поверхности?

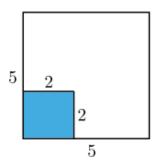
Почему-то многие школьники пытаются посчитать ее по аналогии с объемом, как разность площадей большого и малого «кирпичей».

В ответ на такое «решение» я предлагаю детскую задачу – если у четырехугольного стола отпилить один угол, сколько углов у него останется? :-)

На самом деле нам нужно посчитать сумму площадей всех граней – верхней, нижней, передней, задней, правой, левой, а также сумму площадей трех маленьких прямоугольников, которые образуют «полочку». Можно сделать это «в лоб», напрямую. Но есть способ проще.

Прежде всего, если бы из большого параллелепипеда ничего не вырезали, его площадь поверхности была бы равна 110. А как повлияет на него вырезанная «полочка»?

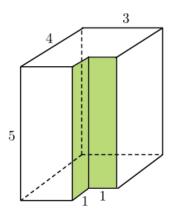
Давайте посчитаем сначала площадь всех горизонтальных участков, то есть нижнего основания, верхнего основания (из которого вырезан кусочек) и горизонтальной грани «полочки». С нижним основанием – все понятно, оно прямоугольное, его площадь равна $5 \cdot 5 = 25$. А вот сумма площадей верхнего основания и горизонтальной грани «полочки» тоже равна 25! Посмотрите на них сверху.



... В этот момент и наступает понимание. Кому-то проще нарисовать вид сверху. Комуто – представить, что мы передвигаем дно и стенки полочки и получаем целый большой параллелепипед, площадь поверхности которого равна 110. Каким бы способом вы ни решали, результат один – площадь поверхности будет такой же, как и у целого параллелепипеда, из которого ничего не вырезали.

Ответ: 110.

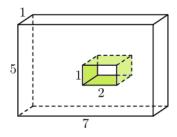
2. Здесь тоже надо найти площадь поверхности многогранника:



$$S = 2 \cdot 12 + 2 \cdot 15 + 2 \cdot 20 - 2 = 72.$$

Из площади поверхности «целого кирпича» вычитаем площади двух квадратиков со стороной 1 – на верхней и нижней гранях.

3. Нарисована прямоугольная плитка с «окошком». Задание то же самое – надо найти площадь поверхности.



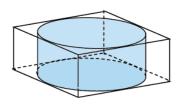
Сначала посчитаем сумму площадей всех граней.

Представьте, что вы дизайнер, а эта плитка – украшение. И вам надо оклеить эту плитку чем-то ценным, например, кристаллами Сваровски. И вы их покупаете на собственные деньги. (Я не знаю почему, но эта глупая фраза мгновенно повышает вероятность правильного ответа! :-) Оклеивайте все грани плитки. Но только из площадей передней и задней граней вычтите площадь «окошка». Теперь само окошко надо «оформить». Оклеивайте всю его «раму».

Правильный ответ: 96.

Какие еще задачи могут встретиться вам на экзамене? Например, такие, где одно объемное тело вписано в другое.

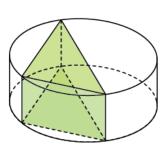
4. Прямоугольный параллелепипед описан около цилиндра, радиус основания и высота которого равны 1. Найдите объем параллелепипеда.



Прежде всего, заметим, что высота цилиндра равна высоте параллелепипеда. Нарисуйте вид сверху, то есть круг, вписанный в прямоугольник. Увидите, что этот прямоугольник – на самом деле квадрат, а сторона его в два раза больше, чем радиус вписанной в него окружности.

Площадь основания параллелепипеда равна 4, высота равна 1, объем равен 4.

5. В основании прямой призмы лежит прямоугольный треугольник с катетами 6 и 8. Боковые ребра равны 4. Найдите объем цилиндра, описанного около этой призмы. В ответ запишите $\frac{V}{\pi}$.

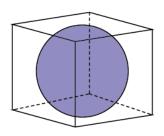


Очевидно, высота цилиндра равна боковому ребру призмы, то есть 4. Осталось найти радиус его основания.

Рисуем вид сверху. Прямоугольный треугольник вписан в окружность. Где будет находиться радиус этой окружности? Правильно, посередине гипотенузы. Гипотенузу находим по теореме Пифагора, она равна 10. Тогда радиус основания цилиндра равен 5. Находим объем цилиндра по формуле. Он равен 100π . В ответ (как и требуется в условии) запишем \underline{V} .

Ответ: 100.

6. В прямоугольный параллелепипед вписан шар радиуса 1. Найдите объем параллелепипеда.



Задача проста. Нарисуйте вид сверху. Или сбоку. Или спереди. Что получается?

В любом случае вы увидите круг, вписанный в квадрат.

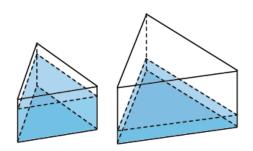
Можно даже ничего не рисовать, а просто представить себе шарик, который положили в коробочку так, что он касается всех стенок, дна и крышки. Ясно, что такая коробочка будет кубической формы.

Длина ребра этого куба в два раза больше, чем радиус шара.

Ответ: 8.

Вот еще один тип задач. Как изменятся объем и площадь поверхности, если мы увеличим или уменьшим какой-либо линейный размер (или размеры) объемного тела?

7. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 12 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 2 раза больше, чем у первого? Ответ выразите в сантиметрах.



Слова «другой такой же сосуд» означают, что другой сосуд тоже имеет форму правильной треугольной призмы. То есть в его основании – правильный треугольник, у которого все стороны в два раза больше, чем у первого. Во сколько раз площадь этого треугольника больше, чем у первого?

Давайте запомним простое правило.

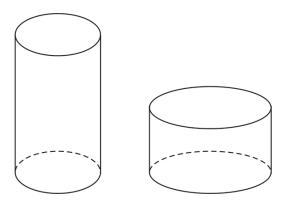
Если все линейные размеры фигуры увеличить в k раз — площадь увеличится в k^2 раз. Если все размеры объемного тела, то есть длину, ширину и высоту, увеличить в k раз — его площадь поверхности увеличится в k^2 , а объем — в k^3 раз.

Это правило верно и для призмы, и для конуса, и для шара, то есть для любого объемного тела.

Площадь основания второго сосуда в 4 раза больше, чем у первого. Объем воды остался неизменным. Следовательно, в 4 раза уменьшится высота.

Ответ: 3.

8. Одна цилиндрическая кружка вдвое выше второй, зато вторая в два раза шире. Найдите отношение объема второй кружки к объему первой.



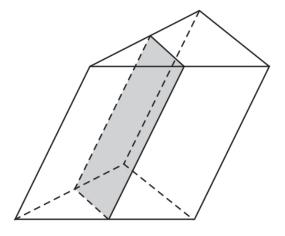
Вспомните, как мы решали стандартные задачи на движение и работу. Мы рисовали таблицу, верно? И здесь тоже нарисуем таблицу. Запишите, чему равны высота, радиус и объем для каждой кружки.

Объем цилиндра равен $\pi R^2 h$

	высота	радиус	объем
первая кружка	h	R	$\pi R^2 h$
вторая кружка	$\frac{1}{2}h$	2R	$\frac{\pi \left(2R\right)^2 h}{2}$

Считаем объем второй кружки. Он равен $\frac{\pi (2R)^2 h}{2} = 2\pi R^2 h$. Получается, что он в два раза больше, чем объем первой.

9. Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы.

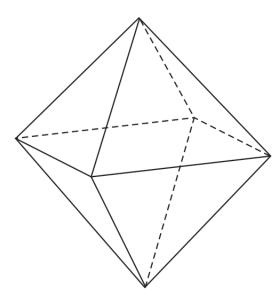


Здесь даже формулы не понадобятся! Высота меньшей призмы такая же, как у большой. А какой же будет ее площадь основания? Об этом мы говорили в задаче 7.

Очевидно, площадь основания меньшей призмы в 4 раза меньше, чем у большой. Ведь средняя линия треугольника равна половине основания. Значит, объем отсеченной призмы равен 8.

И еще одна классическая экзаменационная задача. Никаких формул!

10. Во сколько раз увеличится площадь поверхности октаэдра, если все его ребра увеличить в 3 раза?



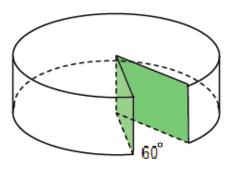
Только не надо обмирать от ужаса при слове «октаэдр». В переводе это слово означает «правильный восьмигранник». Он здесь нарисован и представляет собой две сложенные вместе четырехугольные пирамиды :-)

Mы уже говорили – если все ребра многогранника увеличить в три раза, площадь поверхности увеличится в 9 раз, поскольку $3^2=9$.

Ответ: 9.

Иногда требуется найти объем части цилиндра или части пирамиды.

11. Найдите объем V части цилиндра, изображенной на рисунке. B ответе укажите $\frac{V}{\pi}$.



Изображен не целый цилиндр, а его часть. Из него, как из круглого сыра, вырезали кусок. Надо найти объем оставшегося «сыра».

Какая же часть цилиндра изображена? Вырезан сектор с углом 60 градусов, а 60° – это одна шестая часть полного круга. Значит, от всего объема цилиндра осталось пять шестых. Находим объем всего цилиндра, умножаем на пять шестых, делим на π , записываем ответ: 937,5.

Глава 12.

Стереометрия: приемы и секреты.

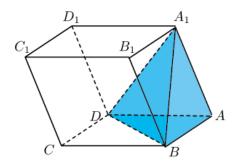
Разбор самых интересных задач.

Задачи на сообразительность.

Правильный чертеж и пространственное воображение.

Рассмотрим интересные приемы решения задач по стереометрии в части В. Очевидно, их лучше знать заранее, чем изобретать на экзамене.

1. Объем параллелепипеда равен 9. Найдите объем треугольной пирамиды $ABDA_1$.



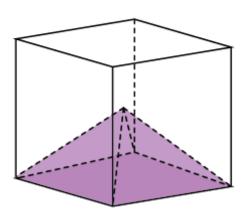
Мы помним, что объем параллелепипеда равен $S_{\text{осн}} \cdot h$.

A объем пирамиды равен $\frac{1}{3} \cdot S_{\text{осн}} \cdot h$.

Иными словами, если у параллелепипеда и пирамиды одинаковые основания и одинаковые высоты, то объем пирамиды будет в три раза меньше, чем объем параллелепипеда. А у нашей пирамиды еще и площадь основания в два раза меньше. Значит, ее объем в шесть раз меньше объема параллелепипеда.

Ответ: 1.5.

2. Объем куба равен 12. Найдите объем четырехугольной пирамиды, основанием которой является грань куба, а вершиной – центр куба.



Один из способов решения задачи - посчитать, сколько нужно четырехугольных пирамидок, чтобы сложить из них такой кубик. Представьте, что куб сделан из проволоки, и вы вставляете пирамидки, вершиной внутрь, в каждую его грань – в верхнюю, нижнюю, правую, левую, переднюю и заднюю.

Вот другой способ решения этой задачи.

Если бы пирамида и куб имели одинаковые высоты, объем пирамиды был бы в 3 раза меньше объема куба (поскольку площади основания у них равны). А у нашей пирамиды

высота в два раза меньше, чем у куба. Значит, ее объем будет в 6 раз меньше, чем у куба.

Ответ: 2.

3. Радиусы трех шаров равны 6, 8 и 10. Найдите радиус шара, объем которого равен сумме их объемов.

На самом деле это задача по алгебре. Объем шара равен $\frac{4}{3}\pi R^3$. Составьте уравнение и решите его. $\frac{4}{3}\pi 6^3 + \frac{4}{3}\pi 8^3 + \frac{4}{3}\pi 10^3 = \frac{4}{3}\pi R^3$

$$6^3 + 8^3 + 10^3 = R^3$$

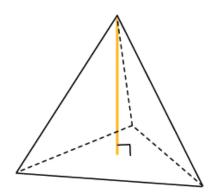
$$R^3 = 1728$$

Как извлечь кубический корень из этого числа? Очень просто! Вспомним приемы быстрого счета и разложим 1728 на множители.

$$1728 = 8 \cdot 216 = 2^3 \cdot 6^3$$

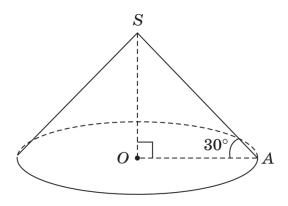
$$R = 2 \cdot 6 \ R = 12$$

4. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен $\sqrt{3}$.



В основании правильной треугольной пирамиды лежит правильный треугольник. У него все углы равны 60° и все стороны тоже равны. Площадь его проще всего найти по формуле $S=\frac{1}{2}a^2\sin 60^\circ$. Она равна $\sqrt{3}$. Поскольку $V=\frac{1}{3}\cdot S\cdot h$, высота равна 3.

5. Найдите объем V конуса, образующая которого равна 2 и наклонена к плоскости основания под углом 30 градусов. В ответе укажите $\frac{V}{\pi}$.



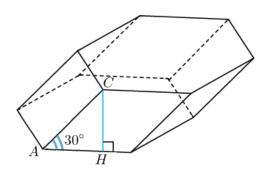
Если вы забыли, что такое образующая, – смотрите нашу таблицу с формулами для тел вращения. А что значит «наклонена к плоскости основания»?

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость, то есть угол OAS.

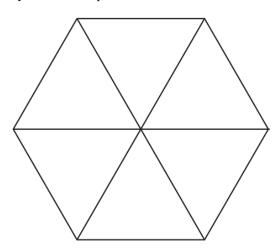
Из прямоугольного треугольника AOS находим, что $OS=h=1, AO=R=\sqrt{3}.$ Объем конуса найдем по известной формуле и поделим на $\pi.$

Ответ: 3.

6. Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны $2\sqrt{3}$ и наклонены к плоскости основания под углом 30 градусов.



Нарисуйте вид сверху, то есть правильный шестиугольник. У него все стороны равны, все углы тоже равны.



Как найти площадь правильного шестиугольника, если специальную формулу вы не знаете?

Проще всего разбить его на 6 одинаковых равносторонних треугольников. Формула площади равностороннего треугольника вам известна:

$$S = \frac{1}{2}a^2 \sin 60^\circ$$

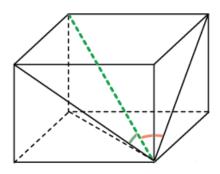
Подставив числа в формулу, получим, что площадь основания равна $12\sqrt{3}$. Теперь найдите высоту и объем.

Высота призмы — это отрезок, перпендикулярный ее основаниям. Из прямоугольного треугольника ACH находим:

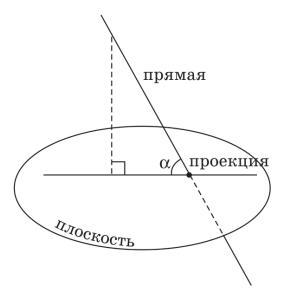
$$h = \frac{1}{2}AC = \sqrt{3}.$$

Ответ: 36.

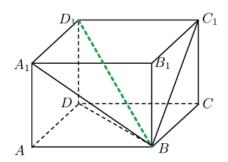
7. Диагональ прямоугольного параллелепипеда равна $\sqrt{2}$ и образует углы 30, 30 и 45 градусов с плоскостями граней параллелепипеда. Найдите объем параллелепипеда.



Мы уже говорили, что угол между прямой и плоскостью – это угол между прямой и ее проекцией на данную плоскость.



Обозначим вершины параллелепипеда.



Проекцией диагонали BD_1 на нижнее основание будет отрезок BD. Пусть диагональ образует угол 45 градусов именно с плоскостью нижнего основания.

Дальше – рассмотрите прямоугольный треугольник BDD_1 и найдите высоту параллелепипеда, а затем его длину и ширину.

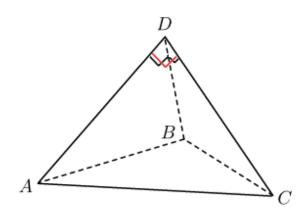
По теореме Пифагора, $BD=BD_1\cdot\sin 45^\circ=1$. Итак, мы нашли высоту параллелепипеда.

Проекцией BD_1 на переднюю грань будет отрезок A_1B .

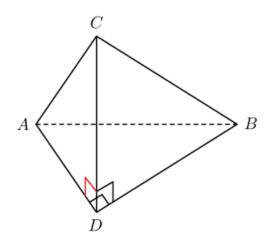
Из прямоугольного треугольника A_1BD_1 найдем $A_1D_1=BD_1\cdot\sin 30^\circ=\frac{\sqrt{2}}{2}$. Мы нашли ширину параллелепипеда. А его длина (то есть отрезок C_1D_1) находится аналогично. Она тоже равна $\frac{\sqrt{2}}{2}$. Объем параллелепипеда равен $\frac{1}{2}$.

Ответ: 0,5.

8. Боковые ребра треугольной пирамиды взаимно перпендикулярны, каждое из них равно 3. Найдите объем пирамиды.



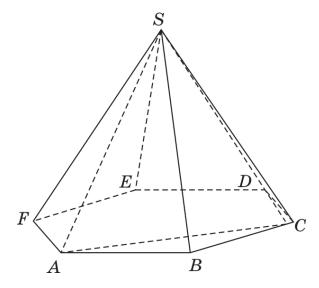
Если действовать «в лоб», считая, что ABC – основание, мы получим задачу уровня C2. Но зачем такие сложности? Покрутите чертеж. Посмотрите на него с другой точки зрения :-)



Объем пирамиды равен $\frac{1}{3}S_{\text{осн}}\cdot h$. В основании лежит равнобедренный прямоугольный треугольник, площадь которого равна 4,5. Тогда объем пирамиды равен 4,5.

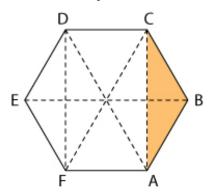
Ответ: 4,5.

9. Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды ABCDEF, равен 1. Найдите объем шестиугольной пирамиды.



Треугольная и шестиугольная пирамиды, о которых говорится в условии задачи, имеют одинаковую высоту. Разные только площади основания. Нарисуйте вид снизу. Во сколько раз площадь основания треугольной пирамиды меньше, чем у шестиугольной?

Обратите внимание, что правильный шестиугольник удобнее всего разбить на треугольники. Если в задаче по стереометрии фигурирует шестиугольная пирамида или призма – вам пригодится этот прием.



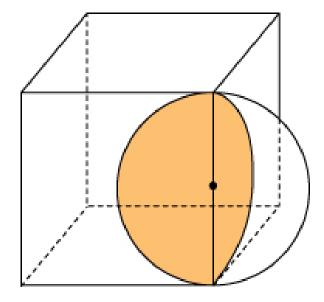
Видим, что площадь основания треугольной пирамиды в 6 раз меньше, чем площадь основания шестиугольной.

Ответ: 6.

Если в условии задачи есть рисунок – значит, повезло. Рисунок – это уже половина решения. А если его нет? Значит, рисуйте сами, как умеете. С каждым разом у вас будет получаться всё лучше и лучше. Отговорки «не умею» или «рисование у нас было только в детском саду» – не принимаются. Вам ведь не девочку на шаре надо изобразить, а намного более простые объекты :-)

10. Середина ребра куба со стороной 1,9 является центром шара радиуса 0,95. Найдите площадь части поверхности шара, лежащей внутри куба. В ответе запишите $\frac{S}{\pi}$.

Обратите внимание, что $0,95\cdot 2=1,9$. Значит, сторона куба является диаметром шара. Осталось понять, какая часть шара лежит внутри куба. Нарисуем чертеж, и всё станет понятно:



Правильный ответ: 0,9025.

11. Вершина A куба $ABCDA_1B_1C_1D_1$ со стороной 1,6 является центром сферы, проходящей через точку A_1 . Найдите площадь S части сферы, содержащейся внутри куба. B ответе запишите величину .

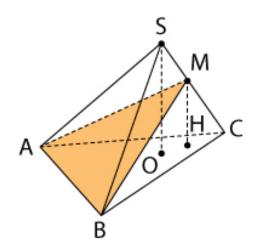
Здесь главное – понять, какая часть шара лежит внутри куба. Порисуйте кубики и шарики. Возьмите яблоко (его форма близка к шарообразной), потренируйтесь. Можете взять луковицу :-) Сделайте это сейчас. Ведь на ЕГЭ вам не дадут килограмма яблок или лука для выработки пространственного мышления.

Ответ: 1,28.

12. Объем треугольной пирамиды равен 15. Плоскость проходит через сторону основания этой пирамиды и пересекает противоположное боковое ребро в точке, делящей его в отношении 1:2, считая от вершины пирамиды. Найдите больший из объемов пирамид, на которые плоскость разбивает исходную пирамиду.

Эта задача уже поинтереснее. Ей и до С2 недалеко.

Прежде всего, стоит разобраться, что значит «точка делит боковое ребро в отношении 1:2, считая от вершины»? Это значит, что она делит его на отрезки, длины которых x и 2x.

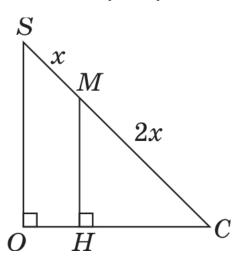


Плоскость ABM делит пирамиду ABCS на две. Видите их на рисунке? У пирамид ABCM и ABCS общее основание ABC. Ясно, что отношение их объемов равно отношению высот.

Проведем перпендикуляры SO и MH к плоскости основания пирамиды.

SO – высота пирамиды ABCS, MH – высота пирамиды ABCM.

Очевидно, что отрезок SO параллелен отрезку MH, поскольку два перпендикуляра к одной плоскости параллельны друг другу. Через две параллельные прямые можно провести плоскость, причем только одну. Итак, точки S, M, C, O и H лежат в одной плоскости, то есть мы от стереометрической задачи перешли к «плоской», планиметрической.

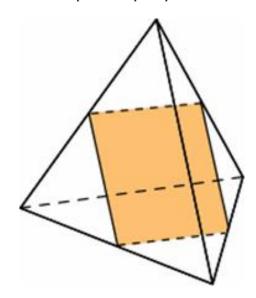


Треугольники SOC и MHC подобны.

MC:SC=MH:SO=2:3. Значит, $MH=\frac{2}{3}SO.$ Объем пирамиды ABCM равен $\frac{2}{3}$ объема пирамиды ABCS.

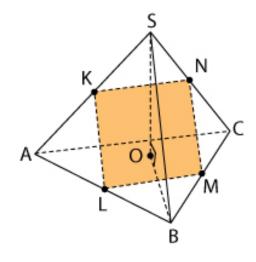
Ответ: 10.

12. Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер.



Все ребра равны, значит, тетраэдр – правильный. Каждая его грань является правильным треугольником.

Как вы думаете, какая фигура получится в сечении?



Заметим, что отрезок KL – средняя линия треугольника ASB.

Тогда MN = KL, поскольку MN – средняя линия треугольника BSC.

Аналогично, LM = KN = MN = KL. Значит, KLMN – ромб, все стороны которого равны 0,5.

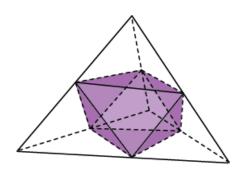
Вспомните теорему о трех перпендикулярах. Постарайтесь доказать, что KLMN - квадрат.

Площадь этого квадрата найти легко.

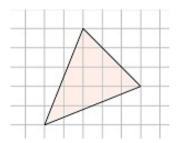
Ответ: 0,25.

Вот мы и дошли до самых сложных задач по стереометрии, а также секретных приемов, применяемых для их решения.

13. Объем тетраэдра равен 1,9. Найдите объем многогранника, вершинами которого являются середины сторон данного тетраэдра.



Можно долго искать формулу объема октаэдра (именно он там и находится, в середине), а можно поступить умнее. Помните, что мы делали, если требовалось найти площадь неудобно расположенной фигуры?



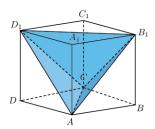
Мы говорили, что проще всего посчитать площадь квадрата со стороной 5, в который вписан данный треугольник. И вычесть из нее площади трех прямоугольных треугольников. Видите их на рисунке?

В нашей задаче про тетраэдр и многогранник можно поступить аналогично. Сделайте это.

Как получился многогранник в серединке? От исходного тетраэдра отрезали четыре маленьких тетраэдра, объем каждого из которых в 8 раз меньше, чем объем большого (поскольку сторона основания в два раза меньше). Получаем: $V-\frac{4}{8}V=\frac{1}{2}V$.

Ответ: 0,95.

14. Объем параллелепипеда равен 4,5. Найдите объем треугольной пирамиды AD_1CB_1 .



Обратите внимание, нарисован куб, а написано – параллелепипед. Мы знаем, что его объем равен 4,5, но не знаем, чему равны его длина, ширина и высота. Обозначим их a,b и c. Не так-то просто найти площадь основания и высоту пирамиды AD_1CB_1 . Так может, и не надо этого делать?

Есть более удобный способ – тот же, что и в предыдущей задаче. Найдите объем пирамиды AD_1CB_1 как разность объемов. Что нужно отрезать от куба, чтобы получилась пирамида AD_1CB_1 ?

Пирамида AD_1CB_1 получается, если мы отрежем от параллелепипеда четыре пирамиды по углам – $ABCB_1, D_1B_1CC_1, AA-1D_1B_1$ и $ADCD_1$. А объем каждой из них легко посчитать – так, как мы делали в первой задаче этой главы. Например, объем пирамиды $ABCB_1$ равен $\frac{1}{6}$ объема параллелепипеда. Объем всех четырех пирамид, которые отрезали, равен $\frac{2}{3}$ объема параллелепипеда.

Значит, объем пирамиды AD_1CB_1 равен $\frac{1}{3}$ объема параллелепипеда.

Ответ: 1,5.

У вас получается? Хотите попробовать свои силы в решении задачи С2 (№16)? Рекомендую вам свой видеокурс «С2. Стереометрия на ЕГЭ по математике» из комплекта Премиум. Обратите внимание, что курс начинается с краткой теории – определений, свойств, признаков и теорем. Без этого серьезную задачу по стереометрии не решить.

Глава 13.

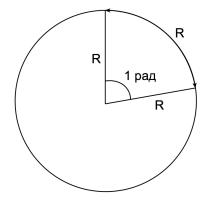
Тригонометрия. Две системы измерения углов. Тригонометрический круг. Формулы тригонометрии. Формулы приведения.

В <u>главе 9</u> мы определили, что такое синус, косинус и тангенс острого угла в прямоугольном треугольнике. Еще, рассматривая внешний угол треугольника, и говорили о синусе, косинусе и тангенсе тупого угла.

Сейчас узнаем об углах много неожиданного. Мы будем говорить об углах положительных и отрицательных. Об углах, больших 180 и даже 360 градусов. Мы введем понятия синуса, косинуса и тангенса для произвольных, то есть для любых углов.

Начнем с систем измерения углов. До сих пор мы измеряли углы только в градусах. Оказывается, есть и другая система измерения углов – **радианы**.

По определению, 1 радиан – это центральный угол, опирающийся на дугу, длина которой равна радиусу. Вот он, на рисунке.



Как перевести градусы в радианы и наоборот?

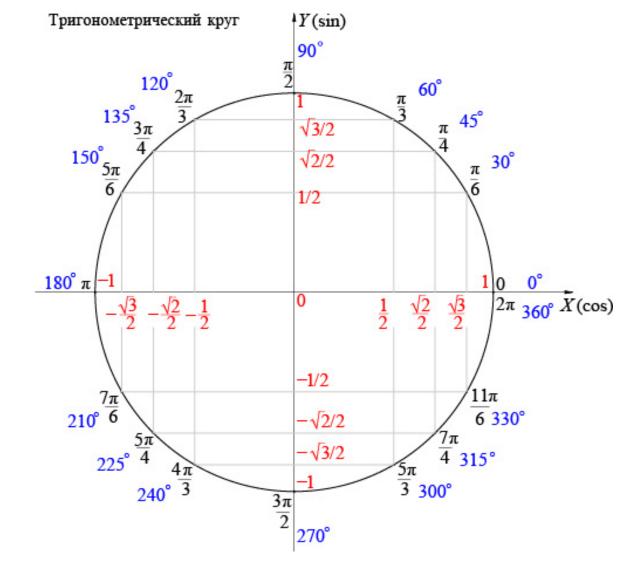
Вспомним, что полный круг – это 360 градусов. Длина окружности равна $2\pi r$. Составим пропорцию. Длина окружности так относится к длине дуги AB на нашем рисунке, как 360° - к величине угла, опирающегося на дугу AB, то есть к углу в 1 радиан.

 $360^{\circ} - 2\pi r$ 1 радиан - r

Слева в нашей пропорции углы, справа – длина полного круга и длина дуги AB.

Из этой пропорции получаем, что $360^\circ=2\pi$ радиан. Значит, полный круг — это 2π радиан. Тогда полкруга — это π радиан, четверть круга (то есть 90°) — это $\frac{\pi}{2}$ радиан. Любой угол, выраженный в градусах, можно перевести в радианы. И наоборот, 1 радиан приблизительно равен 57 градусов.

А теперь встречайте - тригонометрический круг! Тригонометрический круг - самый простой способ начать осваивать тригонометрию. Он красив, легко запоминается, и на нём есть всё необходимое. Тригонометрический круг заменит вам десяток таблиц.



Нарисуем единичную окружность — то есть окружность с радиусом, равным единице, и с центром в начале системы координат. Той самой системы координат с осями OX и OY, в которой мы привыкли рисовать графики функций.

Договоримся отсчитывать углы от положительного направления оси OX против часовой стрелки.

Mы помним, что полный круг — это 360 градусов.

Тогда точка с координатами (1;0) соответствует углу в 0 градусов. Точка с координатами (-1;0) отвечает углу в 180° , точка с координатами (0;1) — углу в 90° . Каждому углу от нуля до 360 градусов соответствует точка на единичной окружности. Обратите внимание, что на нашем тригонометрическом круге углы отмечены и в градусах, и в радианах.

Косинусом угла называется абсцисса (то есть координата по оси OX) точки на единичной окружности, соответствующей данному углу α .

Синусом угла называется ордината (то есть координата по оси OY) точки на единичной окружности, соответствующей данному углу α .

Например:

$$\cos 60^\circ = \frac{1}{2};$$

$$\cos 0^{\circ}=1;$$

$$\sin 45^\circ = \frac{\sqrt{2}}{2};$$

$$\sin 240^\circ = -\frac{\sqrt{3}}{2}.$$

Всё это легко увидеть на нашем рисунке.

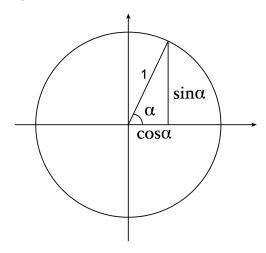
Итак, косинус и синус — координаты точки на единичной окружности, соответствующей данному углу. Косинус — абсцисса (x), синус — ордината (y). Поскольку окружность единичная, для любого угла и синус, и косинус находятся в пределах от -1 до 1:

$$-1 \le \cos \alpha \le 1$$
,

$$-1 < \sin \alpha < 1$$
.

Рассмотрим прямоугольный треугольник на рисунке. Применим к нему теорему Пифагора и получим основное тригонометрическое тождество:

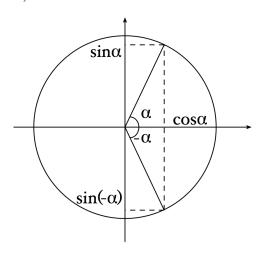
$$\cos^2 \alpha + \sin^2 \alpha = 1$$



Для того, чтобы узнать знаки синуса и косинуса какого-либо угла, не нужно рисовать отдельных таблиц. Всё уже нарисовано! Находим на нашей окружности точку, соответствующую данному углу α , смотрим, положительны или отрицательны ее координаты по x (это косинус угла α) и по y (это синус угла α).

Если отсчитывать угол от нуля против часовой стрелки — он положительный. Если отсчитывать по часовой стрелке — угол будет отрицательным. Например, угол -30° — это угол величиной в 30° , который отложили от положительного направления оси x по часовой стрелке.

Легко заметить, что
$$\cos(-\alpha) = \cos \alpha$$
, $\sin(-\alpha) = -\sin \alpha$.



Обратите внимание на это ценное свойство.

Углы могут быть и больше 360 градусов. Например, угол 732° — это два полных оборота по часовой стрелке и еще 12° . Поскольку, сделав несколько полных оборотов по окружности, мы вернемся в ту же точку с теми же координатами по x и по y, значения синуса и косинуса повторяются через 360° . То есть:

$$\cos\left(\alpha+360^\circ\cdot n\right)=\cos\alpha,$$

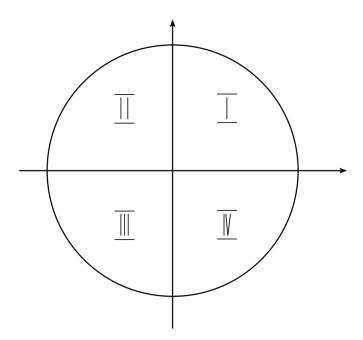
$$\sin\left(\alpha+360^\circ\cdot n\right)=\sin\alpha,$$
 где n — целое число. То же самое можно записать в радианах:
$$\cos\left(\alpha+2\pi n\right)=\cos\alpha,$$

$$\sin\left(\alpha+2\pi n\right)=\sin\alpha.$$

Мы только что записали еще одно ценное свойство синуса и косинуса – периодичность. Это значит, что синус и косинус все свои значения повторяют через целое число кругов. Например, вам надо вычислить $\sin 945^\circ$. Поскольку $945 = 360 \cdot 2 + 225$,

$$\sin 945^{\circ} = \sin (360^{\circ} \cdot 2 + 225^{\circ}) = \sin 225^{\circ} = -\frac{\sqrt{2}}{2}.$$

Mы просто отбросили два полных круга, а потом на тригонометрическом круге посмотрели, чему равен $\sin 225^\circ$. Иногда вам будут встречаться выражения: угол из первой четверти, из третьей четверти. Вот эти четверти, на рисунке.



Мы ничего не говорили о тангенсе и котангенсе. Можно на том же тригонометрическом круге изобразить еще и оси тангенсов и котангенсов, но тогда рисунок станет сложнее. Проще для каждого угла посчитать значение тангенса, разделив его синус на косинус. Мы ведь помним, что

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha},$$
$$ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$$

В результате получим следующую таблицу:

φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\operatorname{tg} \varphi$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0
$\operatorname{ctg} \varphi$	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	_

Еще раз посмотрим на тригонометрический круг. Вот сколько всего мы видим на этом рисунке:

- 1. Перевод градусов в радианы и наоборот. Полный круг содержит 360 градусов, или 2π радиан.
- 2. Значения синусов и косинусов основных углов. Помним, что значение косинуса угла мы находим на оси X, а значение синуса на оси Y.
 - 3. И синус, и косинус принимают значения от -1 до 1.
- 4. Значение тангенса угла α тоже легко найти поделив $\sin \alpha$ на $\cos \alpha$. А чтобы найти котангенс наоборот, косинус делим на синус.
 - 5. Знаки синуса, косинуса, тангенса и котангенса.
- 6. Косинус функция четная, синус нечетная. Наверняка на уроках вы слышали эти слова. Вот что они означают:

$$\cos(-\alpha) = \cos \alpha,$$

$$\sin(-\alpha) = -\sin \alpha.$$

7. Тригонометрический круг помогает нам увидеть, что синус и косинус — функции периодические. Это значит, что все их значения повторяются через полный круг или целое число кругов. Другими словами, их период равен 360° , то есть 2π .

Формулы тригонометрии

Из-за чего происходит досадная потеря баллов на $E\Gamma \Im$ по математике? Из-за невнимательности и вычислительных ошибок. Из-за плохого почерка, в котором эксперт не смог разобраться. А еще из-за того, что лень было выучить формулы.

Тригонометрические формулы необходимы даже для решения задач базового уровня. Как правило, школьники помнят основное тригонометрическое тождество:

$$\sin^2 x + \cos^2 x = 1.$$

А про остальные формулы говорят: «Зачем их учить, у меня шпаргалка в телефоне есть!»

Забудьте об этом. Во-первых, использование на ЕГЭ шпаргалок и мобильных телефонов ведет к удалению с экзамена. Во-вторых, большинство сборников формул в мобильниках, которые мы видели, содержат дикие ошибки.

А в третьих. . . Представьте, что вы в незнакомой стране и вам надо объясниться с ее жителями, по возможности быстро. И вы знаете только одно слово, зато у вас с собой мобильник (который нельзя доставать), а в нем словарь (который содержит ошибки). В таком же положении оказывается и школьник, у которого в активном запасе одна формула, а все остальное где-то там, в шпаргалке, и всё это в волнительной обстановке экзамена!

Итак, одной формулы мало. Зато справочники по математике содержат больше ста тригонометрических формул. Неужели их все надо выучить?

Тригонометрические формулы

$$sin^2\alpha + cos^2\alpha = 1$$

 $tg^2\alpha + 1 = \frac{1}{\cos^2\alpha}$

Основное тригонометрическое тождество

$$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha} \qquad \operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$tg \alpha \cdot ctg \alpha = 1$$

Двойные углы

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\cos 2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha$$

$$tg2 \alpha = \frac{2tg \alpha}{1 - tg^2 \alpha}$$

Синус суммы, косинус разности...

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$tg (\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$$

Сумма синусов, разность косинусов...

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2} \cos \frac{\beta - \alpha}{2}$$

$$\cos \alpha - \cos \beta = 2\sin \frac{\alpha + \beta}{2} \sin \frac{\beta - \alpha}{2}$$

Преобразование суммы в произведение:

$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

$$2 \sin \alpha \sin \beta = \cos(\alpha - \beta) - \cos (\alpha + \beta)$$

$$2 \sin \alpha \cos \beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$

В этой таблице формулы специально собраны по группам. Самая верхняя – основное тригонометрическое тождество и формулы, которые из него получаются. А также формулы для тангенса и котангенса.

Вторая группа – формулы для синуса, косинуса и тангенса двойного угла. Обратите внимание, что для косинуса двойного угла есть целых три формулы.

Следующая группа – формулы для синусов, косинусов и тангенсов суммы или разности двух аргументов.

И две группы формул внизу таблицы – для тех, кто решился сдавать ЕГЭ на профильном уровне. Там они незаменимы.

Как выучить тригонометрические формулы?

Так же, как любые другие: понемногу, но часто.

Не рассказывайте себе сказки о том, что в последнюю ночь перед ЕГЭ все выучите. Каждый день – один блок, то есть три-четыре формулы из нашей таблицы.

Выучить иностранный язык проще всего тому, кто вынужден постоянно на нем говорить. Так и здесь. Решив 20-50 заданий на преобразование тригонометрических выражений и доказательство тождеств, вы точно запомните нужные формулы.

И универсальный способ: ежедневно, садясь за уроки, берите чистый листок и выписывайте наизусть все тригонометрические формулы, какие помните. Когда всё готово — сверяете. И к экзамену вы будете помнить всё.

Формулы приведения.

Обратите внимание, что в нашей таблице с формулами нет формул приведения. Шпаргалки для них не нужны. Формулы приведения не надо зубрить наизусть. Достаточно запомнить два основных принципа, по которым они строятся. Очень хорошо, если вы посмотрите мой видеоурок «Формулы приведения». Здесь лучше один раз увидеть, чем 100 раз прочитать.

Формулы приведения применяются, если вам надо преобразовать выражение вида $\sin(x+\pi),\cos(x+\frac{3\pi}{2}), \lg(2x-\frac{\pi}{2}).$ Одним словом, когда к аргументу (то есть к величине, зависящей от переменной) прибавляется целое число, умноженное на π , или нечетное число, умноженное на $\frac{\pi}{2}$.

А приведение – потому, что мы будем приводить это сложное выражение в скобках к более простому – к углу из первой четверти, то есть от нуля до 90° .

Формулы приведения разделяются на две группы. Одни – те, в которых к аргументу прибавляется нечетное число, умноженное на $\frac{\pi}{2}$ – как в выражении $\cos(x+\frac{3\pi}{2}),\sin(\frac{\pi}{2}-x),\cos(x+\frac{\pi}{2})$ или $\mathrm{tg}(2x-\frac{\pi}{2}).$

Другие – те, в которых к аргументу прибавляется целое число, умноженное на π . Как в выражениях $\sin(x+\pi), \sin(\pi-x), \cos(x-3\pi), \tan(5x+\pi)$.

Запишем, кстати, чему равны эти выражения.

Первая группа. К аргументу прибавляем нечетное число, умноженное на $\frac{\pi}{2}$:

$$\cos(x + \frac{3\pi}{2}) = \sin x$$
$$\sin(\frac{\pi}{2} - x) = \cos x$$
$$\cos(x + \frac{\pi}{2}) = -\sin x$$
$$\tan(2x - \frac{\pi}{2}) = -\cot 2x$$

Заметим, что теперь справа в формуле более простое выражение. И синус меняется на косинус, косинус – на синус, тангенс – на котангенс. Говорят, что здесь тригонометрическая функция меняется на **ко**функцию, то есть на парную к ней функцию. И еще что-то происходит со знаком – в одних случаях он меняется, в других нет.

Теперь вторая группа формул.

$$\sin(x + \pi) = -\sin x$$
$$\sin(\pi - x) = \sin x$$

$$\cos(x - 3\pi) = -\cos x$$

$$tg(5x + \pi) = tg \, 5x.$$

В этом случае функция не меняется на кофункцию.

Итак, если в тригонометрической формуле к аргументу мы прибавляем или вычитаем $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{7\pi}{2}$ – в общем, угол, лежащий на вертикальной оси, - функция меняется на кофункцию.

Если прибавляем или вычитаем π , 3π , 5π – в общем, то, что лежит на горизонтальной оси, - функция на кофункцию не меняется.

То есть если прибавляемый угол лежит на вертикальной оси – вертикально киваем головой, говорим: «Да, да, меняется функция на кофункцию». Если прибавляемый угол лежит на горизонтальной оси – горизонтально мотаем головой, говорим: «Нет, нет, не меняется функция на кофункцию».

Хорошо, мы выяснили, когда меняется функция на кофункцию в тригонометрических формулах, а когда – нет. Осталось выяснить, что происходит со знаком. Когда в правой части формулы он такой же, как в левой, а когда – нет?

Как это проверить – покажу на примере. Возьмем формулу $\cos(x+\frac{\pi}{2})$. Если я возьму x из первой четверти, прибавлю к нему $\frac{\pi}{2}$ – попаду во вторую четверть. Во второй четверти косинус отрицателен. Значит, получится -sinx.

Другой пример: выражение $\sin(\pi-x)$. Я возьму x из первой четверти, тогда угол $\pi-x$ будет во второй четверти, а там синус положителен. Значит, $\sin(\pi-x) = \sin x$. Кстати, мы уже познакомились с этой формулой раньше, в теме «Внешний угол треугольника».

U теперь несколько задач $E\Gamma \Im$ на применение всех известных нам формул и свойств тригонометрических функций.

1.
$$4\sqrt{2} \cdot \cos \frac{\pi}{4} \cdot \cos \frac{7\pi}{3} = 4 \cdot \sqrt{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

Мы нашли значение $\cos\frac{\pi}{4}$ с помощью тригонометрического круга. И еще воспользовались тем, что период косинуса равен 2π , и поэтому $\cos\frac{7\pi}{3}=\cos(2\pi+\frac{\pi}{3})=\cos\frac{\pi}{3}=\frac{1}{2}$.

2.
$$\frac{5 \operatorname{tg} 163^{\circ}}{\operatorname{tg} 17^{\circ}} = \frac{5 \operatorname{tg} (180^{\circ} - 17^{\circ})}{\operatorname{tg} 17^{\circ}} = -\frac{5 \operatorname{tg} 17^{\circ}}{\operatorname{tg} 17^{\circ}} = -5$$

Воспользовались формулой приведения. 180° - находится на горизонтальной оси, значит, не меняется функция на кофункцию (горизонтально мотаем головой, помните?), а знак у тангенса во второй четверти отрицательный – появляется минус.

3.
$$\frac{14\sin 409^{\circ}}{\sin 49^{\circ}} = \frac{14\sin(360^{\circ} + 49^{\circ})}{\sin 49^{\circ}} = \frac{14\sin 49^{\circ}}{\sin 49^{\circ}} = 14$$

Здесь мы вспомнили о том, что синус – функция периодическая, и тогда $\sin(360^\circ + \alpha) = \sin \alpha$.

4.
$$5 \operatorname{tg} 17^{\circ} \cdot \operatorname{tg} 107^{\circ} = 5 \operatorname{tg} 17^{\circ} \cdot \operatorname{tg} (90^{\circ} + 17^{\circ}) = -5 \operatorname{tg} 17^{\circ} \cdot \operatorname{ctg} 17^{\circ} = -5$$

Тоже формула приведения. Угол 90° лежит на вертикальной оси. Вертикально киваем головой: да, меняется функция на кофункцию, то есть тангенс поменялся на котангенс. А минус – потому, что $\lg 107^\circ < 0$. Далее пользуемся тем, что $\lg \alpha \cdot \operatorname{ctg} \alpha = 1$ и получаем ответ.

5.
$$\frac{12}{\sin^2 37^\circ + \sin^2 127^\circ} = \frac{12}{\sin^2 37^\circ + \sin^2 (90^\circ + 37^\circ)} = \frac{12}{\sin^2 37^\circ + \cos^2 37^\circ} = 12$$

Снова формула приведения и основное тригонометрическое тождество: $\sin^2 \alpha + \cos^2 \alpha = \ 1.$

6.
$$\frac{12\sin 11^{\circ} \cdot \cos 11^{\circ}}{\sin 22^{\circ}} = \frac{12\sin 11^{\circ} \cdot \cos 11^{\circ}}{2\sin 11^{\circ} \cdot \cos 11^{\circ}} = 6$$

Применили формулу синуса двойного угла: $\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$.

7.
$$\frac{24(\sin^2 17^\circ - \cos^2 17^\circ)}{\cos 34^\circ} = -\frac{24(\cos^2 17^\circ - \sin^2 17^\circ)}{\cos 34^\circ} = -\frac{24(\cos 34^\circ)}{\cos 34^\circ} = -24$$

Применили формулу косинуса двойного угла: $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$.

8.
$$\frac{5\cos 29}{\sin 61} = \frac{5\cos(90 - 61)}{\sin 61} = \frac{5\sin 61}{\sin 61} = 5$$

Снова формула приведения.

Глава 14.

Что такое функция. Исследование графика функции Производная функции Продолжение подготовки к ЕГЭ: портал www.EGE-Study.ru Большой репетиторский секрет.

Что такое функция?

Понятие функции – одно из основных в математике.

На уроках математики вы часто слышите это слово. Вы строите графики функций, занимаетесь исследованием функции, находите наибольшее или наименьшее значение функции. Но для понимания всех этих действий давайте определим, что такое функция.

Определение функции можно дать несколькими способами. Все они будут дополнять друг друга.

1. Функция – это **зависимость одной переменной величины от другой**. Другими словами, **взаимосвязь** между величинами. Любой физический закон, любая формула отражает такую взаимосвязь величин. Например, формула $p = \rho gh$ – это зависимость давления жидкости p от глубины h.

Чем больше глубина, тем больше давление жидкости. Можно сказать, что давление жидкости является функцией от глубины, на которой его измеряют.

Знакомое вам обозначение y=f(x) как раз и выражает идею такой зависимости одной величины от другой. Величина y зависит от величины x по определенному закону, или правилу, обозначаемому f.

Другими словами: меняем x (независимую переменную, или **аргумент**) – и по определенному правилу меняется y.

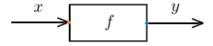
Совсем необязательно обозначать переменные x и y. Например, $L(t) = L_0(1+\alpha t)$ – зависимость длины L от температуры t, то есть закон теплового расширения. Сама запись L(t) означает, что величина L зависит от t.

2. Можно дать и другое определение.

Функция – это определенное действие над переменной.

Это означает, что мы берем величину x, делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину y.

В технической литературе встречается определение функции как устройства, на вход которого подается x – а на выходе получается y.



Итак, функция — это действие над переменной. В этом значении слово «функция» применяется и в областях, далеких от математики. Например, можно говорить о функциях мобильного телефона, о функциях головного мозга или функциях депутата. Во всех этих случаях речь идет именно о совершаемых действиях.

3. Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция y=2x каждому действительному числу x ставит в соответствие число в два раза большее, чем x.

Повторим еще раз: каждому элементу множества X по определенному правилу мы ставим в соответствие элемент множества Y. Множество X называется областью определения функции. Множество Y – областью значений.

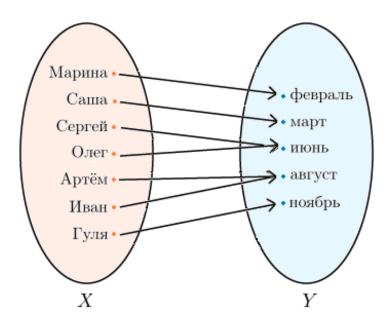
Но зачем здесь такое длинное уточнение: «каждому элементу первого множества соответствует один и только один элемент второго»? Оказывается, что соответствия между множествами тоже бывают разные.

Рассмотрим в качестве примера соответствие между двумя множествами – гражданами России, у которых есть паспорта, и номерами их паспортов. Ясно, что это соответствие взаимно-однозначное – у каждого гражданина только один российский паспорт. И наоборот – по номеру паспорта можно найти человека.

В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция y=3x+2. Каждому значению x соответствует одно и только одно значение y. И наоборот – зная y, можно однозначно найти x.

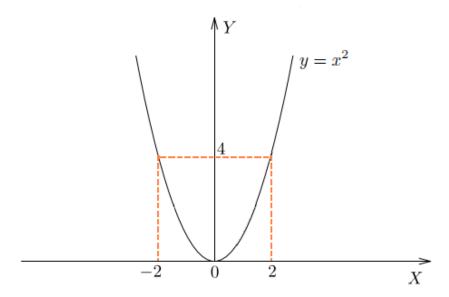
x	-3	-2	-1	0	1	2
y = 3x + 2	-7	-4	-1	2	5	8

Могут быть и другие типы соответствий между множествами. Возьмем для примера компанию друзей и месяцы, в которые они родились:

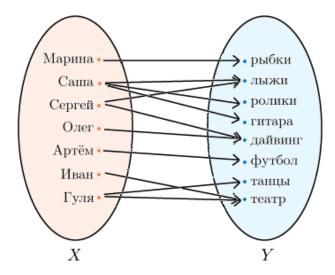


Каждый человек родился в какой-то определенный месяц. Но данное соответствие не является взаимно-однозначным. Например, в июне родились Сергей и Олег.

Пример такого соответствия в математике – функция $y=x^2$. Один и тот же элемент второго множества y=4 соответствует двум разным элементам первого множества: x=2 и x=-2.

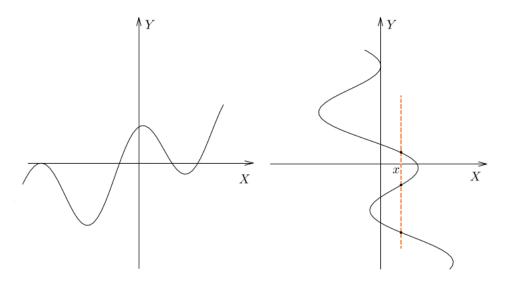


А каким должно быть соответствие между двумя множествами, чтобы оно не являлось функцией? Очень просто! Возьмем ту же компанию друзей и их хобби:



Mы видим, что в первом множестве есть элементы, которым соответствует два или три элемента из второго множества.

Очень сложно было бы описать такое соответствие математически, не правда ли? Вот другой пример. На рисунках изображены кривые. Как вы думаете, какая из них является графиком функции, а какая – нет?



Ответ очевиден. Первая кривая – это график некоторой функции, а вторая – нет. Ведь на ней есть точки, где каждому значению x соответствует не одно, а целых три значения y.

Перечислим способы задания функции.

1. С помощью формулы. Это удобный и привычный для нас способ. Например:

$$y = \cos x,$$

$$y = x^3 - 2x^2,$$

$$z = f(t),$$

$$L(t) = L_0(1 + \alpha t).$$

Это примеры функций, заданных формулами.

2. Графический способ. Он является самым наглядным. На графике сразу видно все – возрастание и убывание функции, наибольшие и наименьшие значения, точки максимума и минимума. Дальше я расскажу об исследовании функции с помощью графика.

К тому же не всегда легко вывести точную формулу функции. Например, курс доллара (то есть зависимость стоимости доллара от времени) можно показать только на графике.

- 3. С помощью таблицы. В школе с этого способа вы когда-то начинали изучение темы «Функция» строили таблицу и только после этого график. А при экспериментальном исследовании какой-либо новой закономерности, когда еще неизвестны ни формула, ни график, этот способ будет единственно возможным.
- 4. С помощью описания. Бывает, что на разных участках функция задается разными формулами. Известная вам функция модуль, то есть y = |x|, задается описанием:

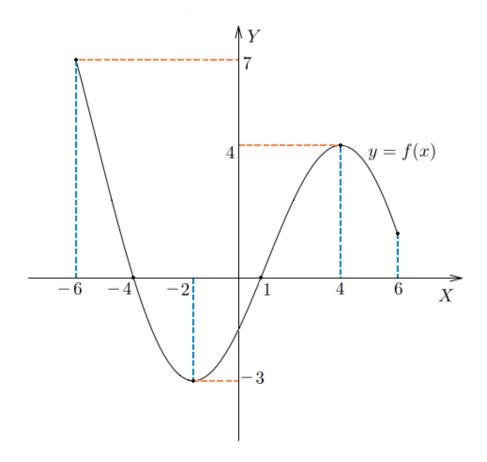
$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

Исследование графика функции

На рисунке изображен график функции y=f(x). Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

- область определения функции
- область значений функции

- нули функции
- промежутки возрастания и убывания
- точки максимума и минимума
- наибольшее и наименьшее значение функции на отрезке.



Уточним терминологию:

Абсцисса — это координата точки по горизонтали.

Ордината — координата по вертикали.

Ось абсцисс — горизонтальная ось, чаще всего называется ось X.

 $Ось \ opдинат - вертикальная ось, или ось <math>Y$.

Aргумент — независимая переменная, от которой зависят значения функции. Чаще всего обозначается x.

Другими словами, мы сами выбираем x, подставляем в формулу функции и получаем y. Область определения функции — множество тех (и только тех) значений аргумента x, при которых функция существует.

Обозначается: D(f) или D(y).

На нашем рисунке область определения функции y = f(x) — это отрезок [-6;6]. Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции — это множество значений, которые принимает переменная y. На нашем рисунке это отрезок [-3;7] — от самого нижнего до самого верхнего значения y.

 $\it Hyли\ функции\ -$ точки, где значение функции равно нулю, то есть $\it y=0$. На нашем рисунке это точки $\it x=-4$ и $\it x=1$.

Значения функции положительны там, где y>0. На нашем рисунке это промежутки [-6;-4] и [-;6].

Значения функции отрицательны там, где y < 0. У нас это промежуток (или интервал) от -4 до 1.

Важнейшие понятия — возрастание и убывание функции на некотором множестве M. В качестве множества M можно взять отрезок [a;b], интервал (a;b), объединение промежутков или всю числовую прямую.

Функция y = f(x) возрастает на множестве M, если для любых x_1 и x_2 , принадлежащих множеству M, из неравенства $x_2 > x_1$ следует неравенство $f(x_2) > f(x_1)$.

Иными словами, чем больше x, тем больше y, то есть график идет вправо и вверх.

Функция y = f(x) убывает на множестве M, если для любых x_1 и x_2 , принадлежащих множеству M, из неравенства $x_2 > x_1$ следует неравенство $f(x_2) < f(x_1)$. Для убывающей функции большему значению x соответствует меньшее значение y. График идет вправо и вниз.

На нашем рисунке функция f(x) возрастает на промежутке [-2;4] и убывает на промежутках [-6;-2] и [4;6].

Определим, что такое точки максимума и минимума функции.

Точка максимума — это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.

Другими словами, точка максимума — такая точка, значение функции в которой больше, чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке x = 4 — точка максимума.

Точка минимума — внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.

То есть точка минимума — такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке x = -2 — точка минимума.

Точка x=-6 — граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и x=6 на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции. В нашем случае это x=4 и x=-2.

А что делать, если нужно найти, например, минимум функции y=f(x) на отрезке [-4;0]? В данном случае ответ: y=-3. Потому что минимум функции — это ее значение в точке минимума.

Аналогично, максимум нашей функции равен 4. Он достигается в точке x=4.

Можно сказать, что экстремумы функции равны 4 и -3.

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке [-6;6] равно -3 и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно 7. Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

Производная функции

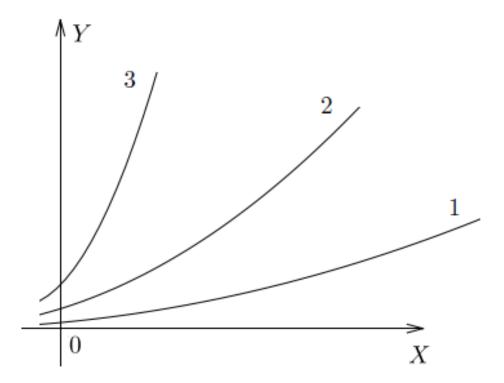
Производная функции — одна из самых сложных тем в школьной программе. Сейчас я просто и понятно расскажу о том, что такое производная и для чего она нужна. Я не буду пока стремиться к математической строгости изложения. Самое главное — понять смысл.

А для тех, кто лучше воспринимает видео, чем печатный текст, моя видеолекция «Производная функции»

Запомним определение:

Производная — это скорость изменения функции.

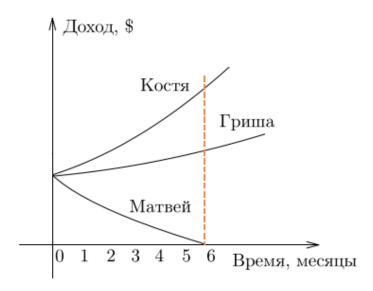
На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?



Ответ очевиден — третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:



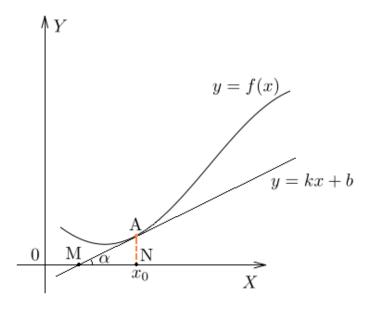
На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется y с изменением x. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

Производная функции обозначается f'(x).

Покажем, как найти f'(x) с помощью графика.



Нарисован график некоторой функции y=f(x). Возьмем на нем точку A с абсциссой x_0 . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции.

Удобная величина для этого — тангенс угла наклона касательной.

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

$$f'(x_0) = \operatorname{tg} \alpha$$

Обратите внимание — в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси OX.

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком.

Найдем $k=\lg\alpha$. Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника AMN:

$$f'(x_0) = \operatorname{tg} \alpha = \frac{AN}{MN}$$

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером В8.

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением y = kx + b.

Величина k в этом уравнении называется *угловым коэффициентом прямой*. Она равна тангенсу угла наклона прямой к оси X.

$$k = \operatorname{tg} \alpha$$
.

Мы получаем, что

$$f'(x_0) = \operatorname{tg} \alpha = k$$

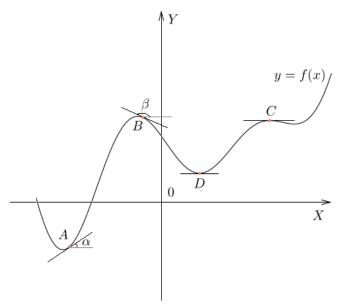
Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции $y=f(x_0)$. Пусть на одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.



В точке A функция $f(x_0)$ возрастает. Касательная к графику, проведенная в точке A, образует острый угол α с положительным направлением оси X. Значит, в точке A производная положительна.

В точке B наша функция убывает. Касательная в этой точке образует тупой угол β с положительным направлением оси X. Поскольку тангенс тупого угла отрицателен, в точке B производная отрицательна.

Вот что получается:

Если функция y = f(x) возрастает, ее производная положительна.

Eсли f(x) убывает, ее производная отрицательна.

A что же будет в точках максимума и минимума? Mы видим, что в точках C (точка максимума) и D (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка C — точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке C с «плюса» на «минус».

В точке D — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная f'(x) положительна, то функция f(x) возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

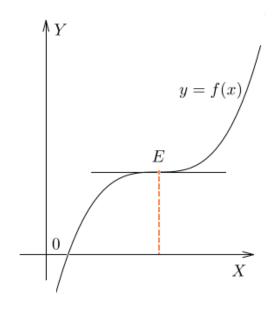
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

f(x)	возрастает	точка максимума	убывает	точка максимума	возрастает
f'(x)	+	0	_	0	+

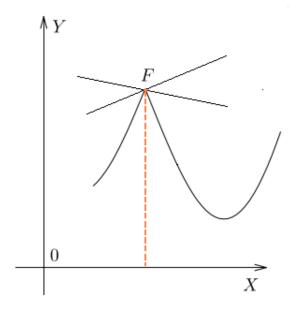
Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое — на первом курсе, при более серьезном изучении функций и производных.

1. Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая *точка перегиба*:



В точке E касательная к графику горизонтальна, и производная равна нулю. Однако до точки E функция возрастала — и после точки E продолжает возрастать. Знак производной не меняется — она как была положительной, так и осталась.

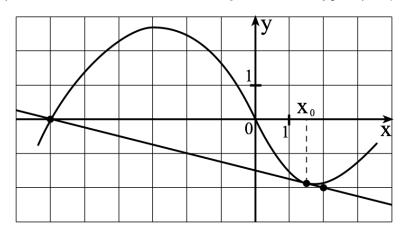
2. Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.



А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется таблица производных.

Рассмотрим типовые задачи из вариантов ЕГЭ на тему «Производная».

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсииссой x_0 . Найдите значение производной функции y = f(x) в точке x_0 .



Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол α с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла φ , смежного с углом α .

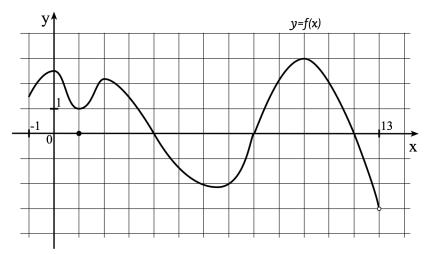
Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему:

$$\operatorname{tg}\varphi=0,25.$$
 Поскольку $\alpha+\varphi=180^{\circ},$ имеем:

$$\operatorname{tg}\alpha = \operatorname{tg}(180^\circ - \varphi) = -\operatorname{tg}\varphi = -0, 25.$$

Ответ: -0,25.

2. На рисунке изображен график функции y=f(x), определённой на интервале (-1;13). Определите количество целых точек, в которых производная функции положительна.

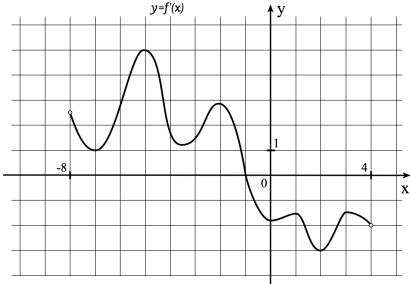


Внимательно читаем задание. Изображён график функции, а вопрос — о производной. Вспоминаем, что производная положительна там, где функция возрастает. Обратите внимание, что в концах отрезка функция не определена — там пустые точки.

В точках 0, 1, 2, 10 функция имеет экстремумы (максимумы или минимумы), то есть не является возрастающей. Считаем количество целых точек, в которых функция возрастает. Их всего три – точки 7, 8 и 9.

Ответ: 3.

3. На рисунке изображён график y=f'(x) — производной функции f(x), определенной на интервале (-8;4). В какой точке отрезка [-7;-3] функция f(x) принимает наименьшее значение?



Эта задача — одна из любимых ловушек, которые составители вариантов ЕГЭ заготовили для абитуриентов.

В ней спрашивается о наименьшем значении функции — а нарисована не функция, а ее производная!

На отрезке [-7;-3] производная этой функции y=f'(x) (график которой мы видим) положительна. На этом отрезке график производной расположен выше оси X. А раз производная положительна, значит, на этом отрезке функция y=f(x) возрастает. Чем больше значение аргумента, тем больше значение функции.

Значит, наименьшее значение на отрезке [-7;-3] функция y=f(x) принимает в крайней левой точке этого промежутка, то есть в точке -7.

Ответ: -7.

Поздравляю! Текстовые задачи, корни, степени и логарифмы, тригонометрия, функции и производные, основы геометрии и стереометрии – освоены. Все необходимое для сдачи $E\Gamma \Im$ на базовом уровне у вас есть. А дальше – более серьезные темы, которые составляют профильный уровень $E\Gamma \Im$ по математике.

Обо всем этом – в моих видеокурсах для подготовки к $E\Gamma \Im$ «Получи пятерку!» и Премиум.

Смотрите, учитесь и поступайте, куда вашей душе угодно!

А теперь - самый главный секрет.

На первый взгляд может показаться, что эта книга предназначена только для того, чтобы сдать математику и забыть ее как страшный сон : -) Но есть у меня еще и другая, скрытая цель. Я хочу помочь вам разобраться с математикой, показать, что в ней нет ничего сложного, хочу слегка подтолкнуть вас, чтобы дальше вы могли двигаться самостоятельно.

Ведь Михайло Ломоносов был прав, говоря: «Математику еще и для того учить следует, что она ум в порядок приводит». Эти слова вот уже несколько веков находят свое подтверждение в жизни.

Математика — это язык, на котором говорят все точные науки. Это тренировка мышления. И еще — расширение ваших возможностей. Да-да, именно так! Сейчас объясню.

Почему-то людям свойственно ограничивать свои возможности. «Ах, я никогда не научусь водить машину!» Ну не хотите – и не надо. Никто и не будет вас уговаривать. К вашим услугам – душное метро и городской автобус, ползущий чуть быстрее улитки.

«У меня нет способностей к языкам. Обойдусь без английского!» Конечно, обойдетесь! Только английский – ключ ко всему миру. А мир, поверьте, не ограничивается несколькими «раскрученными» курортами.

Я много путешествую. Каждый год езжу в Гималаи и Тибет. Без английского там никуда. А однажды, при перелете из окрестностей Килиманджаро на остров Занзибар, у меня пропал рюкзак. Его просто отправили в другой аэропорт. О, как я говорила по-английски, выручая свое имущество! Легко и свободно, как на родном! Вообще не задумываясь, есть ли у меня способности к языкам! :-)

Понимаете, в чем дело? Отказавшись развивать какую-либо способность, человек добровольно перекрывает себе самые интересные пути. А зачем?

Есть такая японская пословица: «Если ты перестал учиться – ты умер».

Если вы ездите в метро – обратите внимание, сколько народу сидит, усердно разгадывая кроссворды и судоку. Эти люди когда-то решили, что у них «нет способностей к математике» и выбрали себе работу попроще, где думать не надо. А теперь их мозги «проголодались» и требуют хоть какой-нибудь пищи!

Посмотрите, сколько интересных и престижных профессий связано с математикой. Возможно, одна из них – ваша? Просто вы об этом пока не знаете. А еще больше таких, где нужна логика, точность, интуиция, умение сформулировать задачу и получить ответ. Программист, архитектор или предприниматель вряд ли ежедневно решают тригонометрические уравнения или берут интегралы, но математические навыки и тренированный мозг им необходимы.

А ЕГЭ непременно сдастся. Никуда не денется. Потому что любая задача решается, если знать подходы и секреты. Любое препятствие можно взять, если захотеть. И знайте, что выигрывает тот, кто думает и действует.

Успеха вам в изучении математики и в жизни!

Дорогие друзья, я буду рада вашим отзывам об этой книге. Я работала над этой книгой несколько лет. А поскольку гениальных идей у меня всегда больше, чем свободного времени, большую часть этой книги я писала в путешествиях. В кафе, самолетах, поездах, гестхаузах. На тропических островах и в базовом лагере Эвереста. И я очень надеюсь, что книга будет понятной и полезной для вас!

Анна Малкова.

Пишите: Anna@EGE-Study.ru

Справочный материал:

1. Таблица квадратов натуральных чисел от 10 до 30

(учите наизусть, как таблицу умножения)

	\boldsymbol{x}	10	11	12	13	14	15	16	17	18	19	20
ĺ	x^2	100	121	144	169	196	225	256	289	324	361	400

- 1		20										
Γ	x^2	400	441	484	529	576	625	676	729	784	841	900

2. Греческий алфавит

$A\alpha$	$B\beta$	$\Gamma\gamma$	$\Delta\delta$	Υυ	$Z\zeta$	$H\eta$	$\Theta\theta$	$\mathrm{I}\iota$	$K\kappa$	$\Lambda\lambda$	$M\mu$
альфа	бета	гамма	дельта	эпсилон	дзета	эта	тета	йота	каппа	лямбда	МЮ

$N\nu$	$\Xi \xi$	Oo	$\Pi\pi$	$P\rho$	$\Sigma \sigma$	$T\tau$	Yυ	$\Phi \phi$	Χχ	$\Psi \psi$	$\Omega\omega$
НЮ	кси	омикрон	ПИ	po	сигма	тау	ипсилон	фи	ХИ	пси	омега

3. Полезные сайты для подготовки к ЕГЭ:

1. www.EGE-Study.ru

Портал Образовательной компании ЕГЭ-Студия. Полный видеокурс для подготовки к ЕГЭ по математике. Множество бесплатных материалов по математике и другим предметам, видеоуроки, запись на мой годовой авторский онлайн-курс подготовки к ЕГЭ, статьи о выборе профессии и многое другое.

2. http://dvd.ege-study.ru/

Полный видеокурс для успешной сдачи ЕГЭ по математике. 11 дисков. Более 30 часов видео. Большая часть задач, предложенных вам на пробном ЕГЭ, там разобрана.

Видеокурс состоит из двух частей.

Курс «Получи пятерку!» - часть B + C1, тригонометрия, 5 дисков.

Курс «Премиум» - вся часть С, 6 дисков.

Видеокурс заменяет год занятий с репетитором!

3. www.reshuege.ru

Содержит тысячи заданий $E\Gamma \Im$ с решениями и ответами. Вы можете решать как отдельные задания по темам, так и варианты $E\Gamma \Im$. Очень полезно для тренировки.

4. www.mathus.ru

Полный авторский курс подготовки к $E\Gamma \Im$ по физике, а также статьи для углубленной подготовки к $E\Gamma \Im$ по математике и олимпиадам по математике и физике.

5. www.alexlarin.net

Тренировочные варианты ЕГЭ, часто повышенной сложности. Форум, где решения задач можно обсудить с коллегами. Все тренировочные, диагностические и экзаменационные работы ФИПИ и МИОО.

6. www.repetitor-narodu.ru

Это мой блог. Профессиональные фотографии и рассказы о путешествиях в Гималаи, Тибет, Китай, Юго-Восточную Азию и другие необычные страны.

Анна Малкова ЕГЭ-2015 по математике. Полный курс подготовки.

Редактор – Марина Серебрякова Верстка – Иван Король Оформление и дизайн обложки – Александр Грудцев.